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Abstract

Kernel-bypass networking (KBN) is becoming the new
norm in modern datacenters. While hardware-based KBN
offloads all dataplane tasks to specialized NICs to achieve
better latency and CPU efficiency than software-based KBN,
it also takes away the operator’s control over network shar-
ing policies. Providing policy support in multi-tenant hard-
ware KBN brings unique challenges — namely, preserving
ultra-low latency and low CPU cost, finding a well-defined
point of mediation, and rethinking traffic shapers. We present
Justitia to address these challenges with three key design as-
pects: (i) Split Connection with message-level shaping, (ii)
sender-based resource mediation together with receiver-side
updates, and (iii) passive latency monitoring. Using a latency
target as its knob, Justitia enables multi-tenancy policies such
as predictable latencies and fair/weighted resource sharing.
Our evaluation shows Justitia can effectively isolate latency-
sensitive applications at the cost of slightly decreased utiliza-
tion and ensure that throughput and bandwidth of the rest are
not unfairly penalized.

1 Introduction

To deal with the growing demands of ultra-low latency with
high throughput (message rates) and high bandwidth in large
fan-out services, ranging from parallel lookups in in-memory
caches [16, 30, 32] and resource disaggregation [2, 22, 52]
to analytics and machine learning [1, 26, 47], kernel-bypass
networking (KBN) is becoming the new norm in modern
datacenters [14, 23, 43, 44, 64]. As the name suggests, with
KBN, applications bypass the operating system (OS) kernel
to improve performance while relieving the CPU.

There are two major trends in KBN today. Software-based
KBN (e.g., DPDK) removes the kernel from the data path
and performs packet processing in the user space. In contrast,
hardware-based KBN (e.g., RDMA) further lowers latency
by at least one order of magnitude and reduces CPU usage by
offloading dataplane tasks to specialized NICs (e.g., RDMA
NICs) with on-board compute.

Hardware KBN, however, takes away the operator’s con-
trol over network sharing policies such as prioritization, iso-
lation, and performance guarantees. Unlike software KBN,
coexisting applications must rely on the specialized NIC to
arbitrate among data transfer operations once they are posted
to the hardware. We observe that existing hardware KBNs
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Figure 1: Design space for multi-tenancy support in KBN.

provide poor support for multi-tenancy. For example, even
for real-world applications such as DARE [49], eRPC [32],
and FaSST [31], sharing the same NIC leads to severe perfor-
mance anomalies including unpredictable latency, throttled
throughput (i.e., lower message rates), and unfair bandwidth
sharing (§3). In this paper, we aim to address the following
question: Can we marry the benefits of software KBN with the
efficiency of hardware KBN and enable fine-grained multi-
tenancy support?

Recent works have explored multi-tenancy support in large-
scale software-based KBN deployments [14, 38, 43]. Their
designs enforce fine-grained sharing policies such as perfor-
mance and security (address space) isolation at the end hosts
and pair with fabric-level solutions (e.g., congestion control)
in case the network fabric becomes a bottleneck (Figure 1).
However, existing software KBN solutions cannot be applied
to hardware-based KBN due to three unique challenges:

1. Because host CPU is no longer involved, common CPU-
based resource allocation mechanism cannot be applied.
Instead, tenants issue RDMA operations with arbitrary
data load at no CPU cost, which leaves no obvious point
of control to exert resource mediation.

2. Hardware offloading brings packetization from user space
into the NIC, disabling fine-grained user-space shaping at
the packet level [27, 51].

3. Itis also crucial to preserve hardware-based KBN’s effi-
ciency (i.e., single us latency and low CPU cost!) while
providing multi-tenancy support.

We present Justitia, a software-only solution that enables

This does not apply to applications that aim for low latency or high
message rates and busy spin their cores for maximum performance.



multi-tenancy support in hardware-based KBN, to address the
aforementioned challenges (§4). Our key idea is to introduce
an efficient software mediator in front of the NIC that can
implement performance-related multi-tenancy policies — in-
cluding (1) fair/weighted resource sharing and (2) predictable
latencies while maximizing utilization or a mix of the two.
Given that RDMA is the primary hardware-based KBN im-
plementation today, in this paper, we specifically focus our
solutions on RDMA NICs (RNICs).

Enabling fine-grained sharing policies in RDMA requires
an efficient way of managing RNIC resources (i.e., link band-
width and execution throughput). To this end, we propose
Split Connections that decouple a tenant application’s intent
from its actuation and introduces a point of resource medi-
ation. Justitia mediates RNIC resources by combining the
benefits of sender-based and receiver-based design. RDMA
operations are split and paced at the sender side before plac-
ing them onto the RNIC; receiver-side updates are collected
to avoid spurious resource allocation caused by either incast
or RDMA READ contention. Shaping is performed at the
message level, where message sizes and their pacing rate are
adjusted dynamically based on the current policy in use. By
splitting RDMA connections, Justitia can effectively manage
tenants’ connections to consume RNIC resources based on the
policy we set instead of letting tenants themselves compete
by arbitrarily issuing RDMA operations.

To provide predictable latencies for latency-sensitive ap-
plications, Justitia introduces the concept of reference flow
and monitors its latency instead of intercepting low-latency
tenant applications. By comparing the latency measurements
of many reference flows from the same sender machine to dif-
ferent receivers, Justitia can quickly detect (local and remote)
RNIC resource contention. Given a tail latency target, Justitia
maximizes RNIC resource utilization without violating the
target. When the target is unachievable, based on the operator-
defined policy, Justitia can choose to ensure that each of the
competing n entities gets at least %th of one of the RNIC’s
two resources, extending the classic hose model of network
sharing [17] to multi-resource RNICs.

We have implemented (§5) and evaluated (§6) Justitia on
both InfiniBand and RoCEv2 networks. It provides multi-
tenancy support among different types of applications with-
out incurring high CPU usage (1 CPU core per host), intro-
ducing additional overheads, or modifying application codes.
For example, using Justitia, DARE’s tail latency improves by
3.4x when running in parallel with Apache Crail [5, 60], a
bandwidth-sensitive storage application, and Justitia preserves
81% of Crail’s original performance. Justitia also comple-
ments RDMA congestion control protocols like DCQCN [64]
while further mitigating receiver-side RNIC contention, and
reduces tail latency even when the network is congested.
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Figure 2: Overview of host-RNIC interaction when posting (i) an RDMA
WRITE operation (D — @. — Q@ — @ — ®) and (ii) an RDMA READ
operation (D — Q2 — Q3 — @ — &).
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2 Background

Recent works [36, 38] have discovered unpredictable laten-
cies due to end-host resource contention, but their primary
focus is on receiver-side engine congestion in software-based
KBN. In this work, we aim to emphasize that sender-side
resource contention in hardware-based KBN such as RDMA
can also lead to severe performance degradation when mul-
tiple tenants coexist. An ideal solution should address both
sender- and receiver-side issues. In this section, we give an
overview on how an RDMA operation is performed, followed
by the root cause of RDMA’s lack of multi-tenancy support.

2.1 Life Cycle of an RDMA Operation

RDMA enables direct access between user-registered mem-
ory regions without involving the OS kernel, offloading data
transfer tasks to the RNIC. Applications initiate RDMA op-
erations by posting Work Requests (WRs) via Queue Pairs
(QPs) to describe the messages to transmit. Figure 2 shows
how an RDMA application interacts with an RNIC to initiate
an RDMA operation. To start an RDMA WRITE, D the user
application place a Work Queue Element (WQE) describing
the message to the Send Queue (SQ), and @ rings a door
bell to notify the RNIC by writing its QP number into the
corresponding doorbell register on RNIC. At this point, the
user application has completed its task and offloads the rest of
the work to RNIC. After the RNIC gets notified, it @ fetches
and processes the requests from the send queue, and @ pulls
the message from the user memory, splits it into packets, and
sends it to the remote RNIC. Finally, the remote RNIC ®
writes the received message directly into the remote memory.

In the case of an RDMA READ operation, the user applica-
tion again posts the WQE and notifies the RNIC to collect it
(@ — B®). The local RNIC then @’) notifies the remote RNIC
to pull the data from remote memory, and 5°) places the mes-
sage back to local memory after de-packetizing the received
packets. Despite the opposite direction of data transfer, the
remote OS remains passive just as the case with an RDMA
WRITE. In both cases, the sender of the RDMA operation
actively controls what goes into the RNIC while the remote
side stays passively unaware.”

2This is true even for two-sided operations that require the receiver to
post WQE:s to its Receive Queue before a Send Request arrives. We still



2.2 Lack of Multi-Tenancy Support

RDMA lacks multi-tenancy support for two primary reasons:
(i) tenants/applications compete for multiple RNIC resources,
and (ii) RNIC processes ready-to-consume message in a
greedy fashion to maximize utilization. Both are related to
different symptoms of the isolation issues.

Multi-Resource Contention There exist two primary re-
sources that need to be shared on an RNIC: link bandwidth
and execution throughput. Bandwidth-sensitive applications
consume RNIC’s link bandwidth to issue large DMA re-
quests. Throughput-sensitive applications, on the other hand,
consume RNIC’s execution throughput to issue small DMA
requests in batches. Latency-sensitive applications, how-
ever, consume neither resource with the small messages they
sparsely send. As we will soon show (§3), isolation anomalies
can occur when applications compete for different resources.

Greedy Processing for High Utilization Although the ac-
tual RNIC implementation details are private, we can consider
two hypotheses on how RNIC handles multiple requests si-
multaneously: either the RNIC buffers WQEs collected in @
in Figure 2 from multiple applications and arbitrates among
them using some scheduling mechanism; or it processes them
in a greedy manner. When a latency-sensitive application
competes with a bandwidth-sensitive application, too much
arbitration in the former can cause low resource utilization
(e.g., unable to catch up the line rate), whereas too little ar-
bitration in the latter leads to head-of-line (HOL) blocking
(which leads to latency variation). Our observations across
all three RDMA implementations (§3), where applications
using small messages are consistently affected by the ones
using larger ones, suggest the latter. Note that even though
receiver-side congestion can also happen during step & as
pointed out in [38], both root causes can easily stem from the
sender side of the operation via step ® and thus cannot be
ignored. We elaborate on how Justitia mitigates both sender-
and receiver-side issues in Section 4.

3 Performance Isolation Anomalies in RDMA

This section establishes a baseline understanding of sharing
characteristics in hardware KBN and identifies common isola-
tion anomalies across different RDMA implementations with
both microbenchmarks (§3.1) and highly optimized, state-of-
the-art RDMA-based applications (§3.2).

To study RDMA sharing characteristics among applica-
tions with different objectives, we consider three major types
of RDMA-enabled applications:

1. Latency-Sensitive: Sends small messages and cares about
the individual message latencies.

2. Throughput-Sensitive: Sends small messages in batches
to maximize the number of messages sent per second.

consider the receiver as passive because it can only control where to place a
message but cannot control when a message will arrive.
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3. Bandwidth-Sensitive: Sends large messages with high
bandwidth requirements.

Summary of Key Findings:

e Both latency- and throughput-sensitive applications need
isolation from bandwidth-sensitive applications (§3.1.1).

e If only latency- or throughput-sensitive applications (or
a mix of the two types) compete, they are isolated from
each other (§3.1.2).

e Multiple bandwidth-sensitive applications can lead to un-
fair bandwidth allocations depending on their message
sizes (§3.1.3).

e Highly optimized, state-of-the-art RDMA-based systems
also suffer from the anomalies we discovered (§3.2).

In the rest of this section, we describe our experimental set-
tings and elaborate on these findings.

3.1 Observations From Microbenchmarks

We performed microbenchmarks between two machines with
the same type of RNIC, where both are connected to the same
RDMA-enabled switch. For most of the experiments, we used
56 Gbps Mellanox ConnectX-3 Pro for InfiniBand, 40 Gbps
Mellanox ConnectX-4 for RoCEv2, and 40 Gbps Chelsio
T62100 for iWARP; 10 and 100 Gbps settings are described
similar. More details on our hardware setups are in Table 1 of
Appendix A.

Our benchmarking applications are written based on Mel-
lanox perftest [61] and each of them uses a single Queue Pair.
Unless otherwise specified, latency-sensitive applications in
our microbenchmarks send a continuous stream of 16B mes-
sages, throughput-sensitive ones send a continuous stream
of batches with each batch having 64 16B messages, and
bandwidth-sensitive applications send a continuous stream
of 1MB messages. Although all applications send messages



using RDMA WRITEs over reliable connection (RC) QPs in
the observations below, other verbs show similar anomalies as
well. We defer the usage and discussion of hardware virtual
lanes to Section 6.3.

3.1.1 Both Latency- and Throughput-Sensitive
Applications Require Isolation

The performance of the latency-sensitive applications deteri-
orate for all RDMA implementations (Figure 3). Out of the
three implementations we benchmarked, InfiniBand and Ro-
CEv2 observes 1.85x and 3.82x degradations in median la-
tency and 2.23x and 4 x at the 99th percentile. While iWARP
performs well in terms of median latency, its tail latency de-
grades dramatically (95x).

Throughput-sensitive applications also suffer. When a
background bandwidth-sensitive application is running, the
throughput-sensitive ones observe a throughput drop of
2.85x or more across all RDMA implementations (Figure 4).
Note that in our microbenchmark with 1 QP per application,
throughput-sensitive applications that consume NIC execu-
tion throughput hit the bottleneck. This does not imply RNIC
always favors link bandwidth over execution throughput. We
notice RNIC bandwidth starts to become the bottleneck when
there exists 4 x more throughput-sensitive applications.

More importantly, both latency- and throughput-sensitive
applications experience more severe performance degrada-
tions (e.g., 139X worse latency with the presence of 16 band-
width applications) as more bandwidth-sensitive applications
join the competition, which is prevalent in shared datacenters
[23, 64]. Appendix B.1 provides more details.

3.1.2 Latency-Sensitive Applications Coexist Well;
So Do Throughput-Sensitive Ones

We observe no obvious anomalies among latency- or
throughput-sensitive applications, or a mix of the two types.
Detailed results can be found in Appendix B.

3.1.3 Bandwidth-Sensitive Applications
Hurt Each Other

Unlike latency- and throughput-sensitive applications,
bandwidth-sensitive applications with different message sizes
do affect each other.Figure 5 shows that a bandwidth-sensitive
application using 1MB messages receive smaller share than
one using 1GB messages. The latter receives 1.42x, 1.22x
and 1.51x more bandwidth in InfiniBand, RoCEv2, and
iWARP, respectively.

3.1.4 Anomalies are Present in Faster Networks Too

We performed the same benchmarks on 100 Gbps InfiniBand,
only to observe that most of the aforementioned anomalies
are still present. Appendix C.1 has the details.

3.2 Isolation Among Real-World Applications

In this section, we demonstrate how real RDMA-based sys-
tems fail to preserve their performance in the presence of the
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aforementioned anomalies.

Specifically, we performed experiments with Apache
Crail [5, 60] and DARE [49]. Crail is a bandwidth-hungry
distributed data storage system that utilizes RDMA. In con-
trast, DARE is a latency-sensitive system that provides high-
performance replicated state machines through the use of a
strongly consistent RDMA-based key-value store.

In these experiments, we deployed DARE in a cluster of
4 nodes with 56 Gbps Mellanox ConnectX-3 Pro NIC on
InfiniBand with 64GB memory. Crail is deployed in the same
cluster with one node running the namenode and one other
node running the datanode.

To evaluate the performance of Crail, we launch 8 parallel
writes (each to a different file) in Crail’s data storage with
the chunk size of the data transfer configured to be 1MB,
and we measure the application-level throughput reported
by Crail. To evaluate the performance of DARE, one DARE
client running on the same server as the namenode of Crail
issues PUT and GET operations (each PUT is followed by a
GET) to the DARE server on the other 3 nodes with a sweep
of message sizes from 8 byte to 1024 bytes, and we measure
the application-level latency reported by DARE.

Figure 6 plots the latency of DARE’s queries with and
without the presence of Crail. In this experiment, we observe a
4.6 x increase in DARE’s tail latency. Additionally, regardless
of whether it is competing with DARE, Crail’s total write
throughput stays at 51.1 Gbps.

Besides DARE, highly-optimized RDMA-based RPC sys-
tem such as FaSST [31] and eRPC [32] also suffer from iso-
lation anomalies caused by unmanaged resource contention
on RNICs. In fact, when background bandwidth-heavy traffic
is present, FaSST’s throughput experiences a 74% drop (Fig-
ure 32) and eRPC’s tail latency increases by 40x (Figure 33).
More details can be found in Appendix C.2.

3.3 Congestion Control is not Sufficient

To demonstrate that DCQCN [64] and PFC are not sufficient
to solve these anomalies, we performed the benchmarks again
with PFC enabled at both the NICs and switch ports, DC-
QCN [64] enabled at the NICs, and ECN markings enabled
on a Dell 10 Gbps Ethernet switch (S4048-ON). In these ex-
periments, latency- and throughput-sensitive applications still
suffer unpredictably (Section 6.3 has detailed results). This
is because DCQCN focuses on fabric-level isolation whereas



the observed anomalies happen at the end host due to RNIC
resource contention (§2.2).

4 Justitia

Justitia enables multi-tenancy in hardware-based KBN, with
a specific focus on enabling two performance-related policies:
(1) fair/weighted resource sharing, or (2) predictable latencies
while maximizing utilization, or a mix of the two. Note that we
restrict our focus on a cooperative datacenter environment in
this paper and defer strategyproofness [20, 21, 50] to mitigate
adversarial/malicious behavior to future work.

Granularity of Control: We define a flow to be a stream
of RDMA messages between two RDMA QPs. Justitia can
be configured to work either at the flow granularity or at the
application granularity by considering all flows between two
applications as a whole.? In this paper, by default, we set
Justitia’s granularity of control to be at the application level
to focus on application-level performance.

4.1 Key Design Ideas

Justitia resolves the unique challenges of enabling multi-
tenancy in hardware KBN with five key design ideas.

e Tenant-/application-level connection management: To
prevent tenants from hogging RNIC resources by issu-
ing arbitrarily large messages or creating a large number
of active QPs at no cost, Justitia provides a tenant-level
connection management scheme by adding a shim layer
between tenant applications and the RNIC. Tenant opera-
tions are handled by Justitia before arriving at the RNIC.

e Sender-based proactive resource mediation: Justitia
proactively controls RNIC resource utilization at the
sender side. This is based on the observation that the
sender of an RDMA operation — that decides when an
operation gets initiated, how large the message is, and in
which direction the message flows — has active control
over every aspect of the transmission while the other side
of the connection remains passive. Such sender-based con-
trol can react before the RNIC takes over and maintain
isolation by directly controlling RNIC resources.

e Dynamic receiver-side updates: Pure sender-based ap-
proaches can sometimes lead to spurious resource allo-
cation when multiple senders coexist but are unaware
of each other. Justitia leverage receiver-side updates to
provide information (e.g., the arrival or departure of an
application) back to the senders to react correctly when a
change in the setting happens.

o Fassive latency monitoring: Instead of actively measuring
each application’s latency, which can introduce high over-
head, Justitia uses passive latency monitoring by issuing
reference flows to detect RNIC resource contention.

3Each granularity has its pros and cons when it comes to performance
isolation, without any conclusive answer on the right one [46].
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o Message-level shaping with splitting: Justitia performs
shaping at the message level to suit RDMA’s message-
oriented transport layer. At the message level, it is easy
to apply specific strategies to control how messages enter
the RNIC based on their sizes and the resource they con-
sume. Large messages are split into roughly equal-sized
sub-messages or chunks to (i) avoid a single message re-
questing too many RNIC resources; (ii) facilitate network
sharing policies such as fair/weighted bandwidth share;
and (iii) mitigate HOL Blocking for latency-sensitive ap-
plications.

4.2 System Overview

Figure 7 presents a high-level system overview of Justitia
handling an RDMA WRITE operation (to compare with Fig-
ure 2). Each machine has a Justitia daemon that performs
latency monitoring and proactive rate management, and appli-
cations create QPs using the existing API to perform RDMA
communication. Justitia relies on applications to optionally
identify their application type. By default, they are treated
as bandwidth-sensitive. VMs, containers, bare-metal appli-
cations, and SR-IOV are all compatible with the design of
Justitia.

As before, the user application starts an RDMA WRITE
operation by D posting a WQE into the Send Queue. Latency-
sensitive applications will bypass Justitia and directly
interact with the RNIC as shown in Figure 2. The other two
types of applications will enter Justitia’s shaper. The Splitter
will @ split the big message from a bandwidth-sensitive ap-
plications equally into sub-messages or @ do nothing given
a small message from a throughput-sensitive application. We
introduce Split Connection — and corresponding split queue
pair (Split QP) — to handle the messages passed through the
Splitter. Before sending out the message, it 3 asks the dae-
mon to fetch a token from Justitia, which is generated at a
rate to maximize RNIC resource utilization consumed by
resource-hungry applications. Once the token is fetched, the
Split QP @ posts a WQE for the sub-message into its SQ and
rings the door bell to notify the RNIC. The RNIC then grabs



the WQE from Split QP, issue a DMA read for the actual data
in application’s memory region, and sends the message to the
remote side (arrows not shown in the figure). Steps @ and @
repeat until all messages in the Split QP have been processed.
The implementation details of Split QP is in Section 5.1.

The Justitia daemon in Figure 7 is a background process
that performs latency monitoring and proactive rate manage-
ment to maximize RNIC resource utilization when latency
target is met.

4.3 Justitia Daemon

Justitia daemon performs two major tasks: (i) proactively
manages rate of all bandwidth- and throughput-sensitive ap-
plications using the hose model [17]; (ii) ensures predictable
performance for latency-sensitive applications while maxi-
mizing RNIC resource usage.

4.3.1 Minimum Guaranteed Rate

Justitia enforces rate based on the classic hose model [17],
and always maintains a minimum guaranteed rate Ry;,:

ng+):wiT
Zwi +Zwi +Zwi X MaxRate
B T L

Ruin =

where wi, represents the weight of application i of type X (i.e.,
bandwidth-, throughput-, or latency-sensitive), and MaxRate
represents the maximum RNIC bandwidth or maximum RNIC
throughput (both are pre-determined on a per-RNIC basis) de-
pending on the type of the application. The idea of R,,;, is to
recognize the existence of latency-sensitive applications, and
provide isolation for them by taking out their share from the
RNIC resources which otherwise they cannot acquire by them-
selves. In the absence of latency-sensitive applications (i.e.,
):wi =0), R 1s equivalent to MaxRate, and all the resource-
hungry applications share the entire RNIC resources. If all
applications have equal weights, and there exist B bandwidth-,
T throughput-, and L latency-sensitive applications, R,,;, can
be simplified as % X MaxRate.

In the presence of a large number of latency-sensitive ap-
plications, R,,;, could be really small, essentially removing
RNIC resource guarantee. To accommodate such cases, one
can fix L = 1 no matter how many latency-sensitive appli-
cations join the system since they do not consume much of
RNIC’s resources. We find this setting works well in practice
(§6.4) and make it the default option for Justitia.

With R,,;, provided, Justitia then maximizes RNIC’s safe
resource utilization (which we denote SafeUtil) until the per-
formance of latency-sensitive applications crosses the target
tail latency (Targetoo).

4.3.2 Latency Monitoring via Reference Flows

Justitia does not interrupt or interact with latency-sensitive
applications because (i) they cannot saturate either of the two
RNIC resources, and (ii) interrupting them fails to preserve
RDMA’s ultra-low latency.

Pseudocode 1 Maximize SafeUtil
1: procedure ONLATENCYFLOWUPDATE(L, Estimatedgg)

2: if L= 0 then > Reset if no latency-sensitive applications
3:  SafeUtil = MaxRate
4: else
5. if Estimatedgg > Targetgg then
6 SafeUril = max(LEYIL R )
7:  else
8: SafeUtil = SafeUtil + 1
9: endif
10: end if

—_ =
N —

T = Tokenpgyes! SafeUtil
: end procedure

Instead, whenever there exists one or more latency-sensitive
applications to particular receiving machine, Justitia main-
tains a reference flow to that machine which keeps sending
10B messages to the same receiver as the latency-sensitive
applications in periodic intervals (by default, RefPeriod = 20
us) to estimate the 99th percentile (Estimatedgg) latency for
small messages. By monitoring its own reference flow, Justi-
tia does not need to wait on latency-sensitive applications to
send a large enough number of sample messages for accurate
tail latency estimation. It does not add additional delay by
directly probing those applications either.

Given the stream of measurements, Justitia maintains a
sliding window of the most recent RefCount (=10000) mea-
surements for a reference flow estimate its tail latency.

4.3.3 Maximizing SafeUtil

Using the selected latency measurement from the reference
flow(s), Justitia maximizes SafeUtil based on the algorithm
shown in Pseudocode 1. To continuously update SafeUtil,
Justitia uses a simple AIMD scheme that reacts to Estimatedog
every RefPeriod interval as follows. If the estimation is above
Targetgg, Justitia decreases SafeUtil by half; SafeUtil is guar-
anteed to be at least R,;;,,. If the estimation is below Targetyo,
Justitia slowly increases SafeUtil. Because SafeUtil ranges be-
tween R, to the total RNIC resources and latency-sensitive
applications are highly sensitive to too high a utilization
level, our conservative AIMD scheme, which drops utilization
quickly to meet Targetgg, works well in practice.

To determine the value of Targetgg, we constructs a latency
oracle that performs pair-wise latency measurement by issu-
ing reference flows across all the nodes in the cluster when
there is no other background. Microsoft applies a similar ap-
proach in [24], which is shown to work well in estimating
steady-state latency in the cluster. We adopt this approach to
give a good estimate of the latency target under well-isolated
scenarios.

4.3.4 Token Generation And Distribution

Justitia uses multi-resource tokens to enforce SafeUtil among
the B bandwidth- and 7' throughput-sensitive applications in
a fair or weighted-fair manner. Each token represents a fixed



amount of bytes (Tokenpy.;) and a fixed number of messages
(Tokengps). In other words, the size of Tokenpy.; determines
the chunk size a message from bandwidth-sensitive applica-
tion is split into. A token is generated every T interval, where
the value of T depends on SafeUtil as well as on the size of
each token. For example, given 48 Gbps application-level
bandwidth and 30 Million operations/sec on a 56 Gbps RNIC,
if Tokenpyyes is set to 1IMB, then we set Tokenpps =5000 ops
and T =167 us.

Justitia daemon continuously generates one token every T
interval and distributes it among the active resource-hungry
applications in a round-robin fashion based on application
weights w&. When w§( = 1 for all applications, Justitia en-
forces traditional max-min fairness; otherwise, it enforces
weighted fairness. Each application independently enforces
its rate using one of the shapers described below.

4.4 Justitia Shapers

Justitia shapers — implemented in the RDMA driver — enforce
utilization limits provided by the Justitia daemon-calculated
tokens. There are two shapers in Justitia: one for bandwidth-
and another for throughput-sensitive applications.

Split Connection Justitia introduces the concept of a Split
Connection to provide an interface to coordinate between ten-
ant applications and the RNIC. It consists of a message splitter
and custom Split QPs (§5.1) to initiate RDMA operations for
tenants. Each application’s Split Connection cooperate with
Justitia daemon to pace split messages transparently.

Shaping Bandwidth-Sensitive Applications. This in-
volves two steps: splitting and pacing. For any bandwidth-
sensitive application, Justitia transparently divides any mes-
sage larger than Tokengy.s into Tokenpgy,.s-sized chunks to
ensure that the RNIC only sees roughly equal-sized messages.
Splitting messages for diverse RDMA verbs — e.g., one-sided
vs. two-sided — requires careful designing (§5.1).

Given chunk(s) to send, the pacer requests for token(s) from
the Justitia daemon by marking itself as an active application.
Upon receiving a token, it transfers chunk(s) until that token
is exhausted and repeats until there is nothing left to send.
The application is notified of the completion of a message
only after all of its split messages have been transferred.

Batch Pacing for Throughput-Sensitive Applications.
These applications typically deal with (batches of) small mes-
sages. Although there is no need for message splitting, pacing
individual small messages requires the daemon to generate
and distribute a large number of tokens, which can be CPU-
intensive. Moreover, for messages as small as 16B, such fine-
grained pacing cannot preserve RDMA’s high message rates.

To address this, Justitia performs batch pacing enabled by
Justitia’s multi-resource token. Each token grants an appli-
cation a fixed batch size (Tokenop,) that it can send together
before receiving the next token. Batch pacing on throughput-
sensitive applications removes the bottleneck on token gener-
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Figure 8: How Justitia handles READs via remote control.

ation and distribution; it also relieves daemon CPU cost with
a unified token bucket.

Mitigating Head-of-Line Blocking. One of the foremost
goals of Justitia is to mitigate HOL blocking caused by the
bandwidth-sensitive applications to provide predictable la-
tencies. To achieve this goal, we need to split messages into
smaller chunks and pace them at a certain rate (enforcing
SafeUtil) with enough spacing between them to minimize the
blocking. However, this simple approach creates a dilemma.
On the one hand, too large a chunk may not resolve HOL
Blocking. On the other hand, too small a chunk may not be
able to reach SafeUtil. It also leads to increased CPU over-
head from using a spin loop to fetch tokens generated in a
very short period in which context switches are not affordable.
This is a manifestation of the classic performance isolation-
utilization tradeoff. We discuss how to pick the chunk size in
Section 5.2.

4.5 Dynamic Receiver-Side Updates

Justitia relies on receiver-side updates to coordinate among
multiple senders to avoid spurious allocation of RNIC re-
sources. The benefits of this design is three-fold: (i) it coordi-
nates with multiple senders to provide the correct resource al-
location; (ii) it keeps track of RDMA READ issued which can
collide with applications issuing RDMA WRITE in the oppo-
site direction; (iii) it mitigates receiver-side engine congestion
by rate-limiting senders with the correct fan-in information.
The updates are communicated among Justitia Daemons
only when a change in the application state happened to a
certain receiver (i.e., an arrival or an exit of an application)
is detected. Two-sided operations, SEND and RECYV, are se-
lected in such case so that the daemon gets notified when
an update arrives. Once a change is detected by a sender, it
informs the receiver, which then broadcasts the change back
to all the senders it connects to so that they can update the
correct R,,;;. In such case, R,,;,, considers remote resource-
hungry application count as part of the total share. If the local
daemon has not issued a reference flow and a remote latency-
sensitive applications launches to the receiver, the daemon
will start a new reference flow to start latency monitoring.

Handling READs RDMA specification allows remote ma-
chines to read from a local machine using the RDMA READ
verb. RDMA READ operations issued by machine A to read
data from machine B compete with all sending operations
(e.g., RDMA WRITE) from machine B. Consequently, Justi-
tia must handles remote READs as well.



App QP CQ RNIC Justitia Split QP Split CQ

Post
FWQE | |
I E——
Split Post
WQE
—WQE |
C Post Repeat shaded
CQE art for
—_ | P
Poling | > | N-| Chunks
\;’;SE (____P
T |
o —
[ Post %
Polling &J
L S

Figure 9: High-level overview of transparent message splitting in Justitia
for one-sided verbs using Split QP. Times are not drawn to scale. Two-
sided verbs involve extra bookkeeping.

~ 100

)

280

% 60 -RoCEv2 (10 Gbps)
= 40 -+RoCEv2 (40 Gbps)
; 20 1B (56Gbps)

'E 0 1B (100Gbps)

<

M 1k 2k 5k 10k

Chunk Size (Bytes)
Figure 10: Maximum achievable bandwidth vs. chunk sizes.

In such a case, the receiver of the READ operation, ma-
chine B, sends the updated guaranteed utilization R,,;,, with
the updated count of senders including remote READ appli-
cations) as shown in D in Figure 8. After A receives that
utilization, it operates RDMA READ by interact with Justitia
normally via @ — ® and enforces the updated rate.

S Implementation

We have implemented the Justitia daemon as a user-space
process in 3,100 lines of C, and the shapers are implemented
inside individual RDMA drivers with 5,200 lines of C code.
Our current implementation focuses on container/bare-metal
applications. Justitia code is available at https://github.
com/SymbioticLab/Justitia.

5.1 Transparently Splitting RDMA Messages

Justitia splitter transparently divides large messages of
bandwidth-sensitive applications into smaller chunks for pac-
ing. Our splitter uses a custom QP called a Split QP to handle
message splitting, which is created when the original QP of
a bandwidth-sensitive flow is created. A corresponding Split
CQ is used to handle completion notifications. A custom
completion channel is used to poll those notifications in an
event-triggered fashion to preserve low CPU overhead.

To handle one-sided RDMA operations, when detecting a
message larger than Tokenpy.s, we divide the original mes-
sage into chunks and only post the last chunk to the appli-
cation’s QP (Figure 9). The rest of the chunks are posted
to the Split QP. Split QP ensures all chunks have been suc-
cessfully transferred before the last chunk handled by the
application’s QP. The two-sided RDMA operations such as
SEND are handled in a similar way, with additional flow con-
trol messages for the chunk size change and receive requests
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(10 ps).
to be pre-posted at the receiver side.
5.2 Determining Token Size for Bandwidth Target

One of the key steps in determining SafeUtil is deciding the
size of each token. Because the RNIC can become throughput-
bound for smaller messages instead of bandwidth-bound, we
cannot use arbitrarily small messages to resolve HOL block-
ing. At the same time, given a utilization target, we want
to use the smallest Tokenpy.; value to achieve that target to
reduce HOL blocking while maximizing utilization.

Instead of dynamically determining it using another AIMD-
like process, we observe that (i) this is an RNIC-specific char-
acteristic and (ii) the number of RNIC types is small. With
that in mind, we maintain a pre-populated dictionary to store
the smallest token size that can saturate a given rate (to en-
force SafeUtil) when sending in a paced batch for different
latency targets; Justitia simply uses the mappings during run-
time. When latency-sensitive applications are not present, a
large token size (1MB) is used. Otherwise, Justitia looks up
the token size in the dictionary based on the current SafeUtil
value. This works well since the lower the SafeUtil is, the
smaller the chunk size it requires to achieve such SafeUtil,
and the better it helps mitigating HOL blocking. Based on
our microbenchmarks (Figure 10), we pick 5KB as the chunk
size when latency-sensitive applications are present.

6 Evaluation

In this section, we evaluate Justitia’s effectiveness in pro-
viding multi-tenancy support among latency-, throughput-,
and bandwidth-sensitive applications on InfiniBand and Ro-
CEv2. To measure latency, we perform 5 consecutive runs
and present their median. We do not show error bars when
they are too close to the median.
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running against a bandwidth-sensitive application.

Our key findings can be summarized as follows:

e Justitia can effectively provide multi-tenancy support
highlighted in Section 3 both in microbenchmarks and at
the application-level (§6.1).

o Justitia scales well to a large number of applications and
works for a variety of settings (§6.2); it complements
DCQCN and hardware virtual lanes (§6.3).

e Justitia’s benefits hold with many latency- and bandwidth-
sensitive applications (§6.4), in incast scenarios (§6.5),
and under unexpected network congestion (§6.6).

A detailed sensitivity analysis of Justitia parameters can be
found in Appendix D.

6.1 Providing Multi-Tenancy Support

We start by revisiting the scenarios from Section 3 to evaluate
how Justitia enables sharing policies among different RDMA
applications. We use the same setups as those in Section 3.
Unless otherwise specified, we set Targetgg =2 us on both
InfiniBand and RoCEv2 for the latency-sensitive applications.
Justitia works well in 100 Gbps networks too (Appendix C.1).
Unless otherwise specified, R, with all applications sharing
the same weights is enforced as a default policy.
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Predictable Latency Latency-sensitive applications are
affected the most when they compete with a bandwidth-
sensitive application. In the presence of Justitia, both median
and tail latencies improve significantly in both InfiniBand
and RoCEv2 (Figure 11a). Due to the enforcement of Ry,
the bandwidth-sensitive application is receiving half of the
capacity (Figure 11b).

Next we evaluate how Justitia performs when the latency
target is set to a relaxed value (Targetgg =10 us) that can be
easily met (Figure 12). For a slightly high Targetoo, Justitia
maximizes utilization, illustrating that splitting and pacing
are indeed beneficial.

Fair Bandwidth and Throughput Sharing Justitia en-
sures that bandwidth-sensitive applications receive equal
shares regardless of their message sizes and number of QPs
in use (Figure 13) with small bandwidth overhead (less than
6% on InfiniBand and 2% on RoCEv2). The overhead be-
comes negligible when applying Justitia to throughput- or
latency-sensitive applications (Figure 14).

Justitia’s benefits extends to the bandwidth- vs through-
sensitive application scenario as well. In this case, it ensures
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against a bandwidth-sensitive one.

that both receive roughly half of their resources. Figure 15
illustrates this behavior. In both InfiniBand and RoCEv2, the
throughput-sensitive application is able to achieve half of its
original message rate of itself running alone (Figure 15a). The
bandwidth-sensitive application, on the other hand, is limited
to half its original bandwidth as expected (Figure 15b).

Justitia and Real-World RDMA Applications To demon-
strate that Justitia can isolate highly optimized real-world ap-
plications, we performed experiments with DARE and Crail.
Thanks to Justitia’s high transparency, we did not need to
make any source code changes in Crail (given it is bandwidth-
sensitive by default), and we only changed DARE by marking
it as latency-sensitive.

From these experiments, we find that Justitia improves
isolation for latency-sensitive applications while also preserv-
ing high bandwidth of the background storage application.
Figure 16 plots the performance of DARE and Crail after
applying Justitia with the same setting as in Section 3.2. We
observe that, with Justitia, DARE achieves performance that
is close to running in isolation even when running alongside
Crail, and Justitia improves DARE’s tail latency performance
by 3.4x when compared to the baseline scenario while Crail
also achieves 81% of its original throughput performance.
This is close to the expected throughput of % of Crail’s orig-
inal throughput since in this experiment Justitia treats the 8
parallel writes on top of Crail as separate applications.

Justitia improves performance isolation of FaSST by 2.5x
in throughput and eRPC by 32.2 X in tail latency. More details
can be found in Appendix C.2.

6.2 Justitia Deep Dive

Scalability and Rate Conformance Figure 17a shows that
as the number of bandwidth-sensitive applications increases,
all applications receive the same amount of bandwidth using
Justitia with total bandwidth close to the line rate. Justitia also
ensures that all throughput-sensitive application send roughly
equal number of messages (Figure 17b).

CPU and Memory Consumption Justitia daemon uses
one dedicated CPU core per node to generate and distribute
tokens. Its memory footprint is not significant.

against a bandwidth-sensitive one.
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Figure 22: [RoCEv2] A bandwidth-, throughput-, and latency-sensitive
application running on two hardware priority queues at the NIC. The
latency-sensitive application uses one queue, while the other two share
the other queue.

Varying Message Sizes Justitia can provide isolation at a
wide range of message sizes for latency-sensitive applications
(Figure 18). The bandwidth-sensitive application receives half
the bandwidth in all cases.

6.3 Justitia + X

Justitia + DCQCN The anomalies we discover in this pa-
per does not stem from the network congestion, but rather
happens at the end hosts. We found that DCQCN falls
short for latency- and throughput-sensitive applications (Fig-
ures 19, 20, 21). Justitia can complement DCQCN and im-
prove latencies by up to 8.6x and throughput by 2.6 x.

Justitia + Hardware Virtual Lanes Although RDMA
standards support up to 15 virtual lanes [7] for separating
traffic classes, they only map to very few hardware shapers
and/or priority queues (2 queues in our RoCE NIC) that are
rarely sufficient in shared environments [3, 37]. Besides, the
hardware rate limiters in the RNIC are slow when setting
new rates (2 milliseconds in our setup), making it hard to use
with real dynamic arrangement. Moreover, it is desirable to
achieve isolation within each priority queue, as those hard-
ware resources are often used to provide different levels of
quality of service, within which many applications reside.

In this experiment, we show how limited number of hard-
ware queues are insufficient to provide isolation and how
Justitia can help in this scenario. we run three applications,
one each for each of the three types (Figure 22). Although the
latency-sensitive application remains isolated in its own class,
the bandwidth- and throughput-sensitive applications compete
in the same class. As a result, the latter observes throughput
loss (similar to Figure 15). Justitia can effectively provide
performance isolation between bandwidth- and throughput-
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sensitive applications in the shared queue.
6.4 Isolating among More Competitors

We focus on Justitia’s effectiveness in isolating many applica-
tions with different requirements and performance character-
istics. Specifically, we consider 8 bandwidth-sensitive appli-
cations — 2 each with message sizes: IMB, 10MB, 100MB,
and 1GB, and 8 latency-sensitive applications. We measure
the latency and bandwidth when all the applications are active
in Figure 23. Targetqo is set to 2us and 20 million samples are
collected for latency measurements.

Without Justitia, latency-sensitive applications suffer large
performance hits: individually each application had median
and 99th percentile latencies of 1.3 and 1.4 us (Figures 3a and
3b). With bandwidth-sensitive applications, they worsen by
71.4x and 79.8 x. Justitia improves median and tail latencies
of latency-sensitive applications by 26.5x and 12.7x while
guaranteeing R,,; among all the applications.

6.5 Handling Incast with Receiver-Side Updates

So far, we have focused on host-side RNIC contentions where
the network fabric is not a bottleneck. We now evaluate how
Justitia leverages receiver-side updates to handle receiver-
side incast in both RoCEv2 with DCQCN and InfiniBand
with its native credit-based flow control. In this experiment,
33 senders are used with the first 32 continuously launch a
bandwidth-sensitive application sending 1MB messages to
a single receiver. Simultaneously, the last sender launches a
latency-sensitive application with messages sent to the same
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Figure 25: [DCQCN] Justitia’s performance when Inter-ToR links are
congested. Justitia achieves the same bandwidth performance because the
total amount of bandwidth share on Sys is smaller than SafeUtil due to
other traffic flowing in the fabric.

receiver. As described in Section 4.5, Justitia daemon at the
receiver sends updates to all the senders whenever a sender
application starts or exits, resulting in ﬁ-th of line rate guar-
anteed at each of the first 32 senders.

Figure 24 plots the results of this experiment, which show
that Justitia still reduces tail latency even after the impact of
fabric-level congestion on the reference flow latency mea-
surements. Since the monitored latency misses the target, all
the bandwidth-sensitive applications send at the minimum
guaranteed rate. However, Justitia still achieves high aggre-
gate bandwidth because this is greater than the fair share.
This shows that Justitia complements congestion control and
further improves the performance of latency-sensitive appli-
cations by mitigating receiver-side RNIC congestion.

We have also included a discussion on frequently asked
questions regarding reference flows’ impact in large-scale
incast scenarios in Appendix E.4.

6.6 Justitia with Unexpected Network Congestion

When there is congestion inside the network, all traffic flow-
ing through the network will experience increased latency,
including the packets generated by Justitia as latency signals.
Because today’s switches and NICs do not report their in-
dividual contributions to end-to-end latency, Justitia cannot
tell them apart. However, in practice, this is not a problem
because the same response is appropriate in both scenarios.

To evaluate how Justitia performs under such cases, we
performed experiments utilizing two interconnected ToR
switches on CloudLab [11]. There are servers attached to
each ToR switch, and every server has a line rate of 10Gbps.
The experiment topology is shown in Figure 25a. In this topol-
ogy, there is a third core switch that connects to each of the
ToR switches with a link with a capacity of 160 Gbps. In this
experiment, we enable DCQCN at all the servers and ECN
marking at the ToR switches in the cluster.

To create a congested ToR uplink, we launch 24 bandwidth-
sensitive applications each issuing IMB messages from 24
servers (S;—S»4) under one rack to the other 24 servers (R—
R»4) under another rack, and none of the servers run Justitia.
At the same time, we issue 8 bandwidth-sensitive applications
and 1 latency-sensitive application between a pair of servers
(825 and Rys) that is controlled by Justitia. Figure 25 shows
the performance with and without Justitia applied. Even in



the case where fabric congestion is out of Justitia’s control,
we see that Justitia can still function correctly, and Justitia
still provides additional performance isolation benefits when
compared with just using congestion control (DCQCN).

7 Related Work

RDMA Sharing Recently, large-scale RDMA deployment
over RoOCEv2 have received wide attention [23, 41, 44, 45, 64].
However, the resulting RDMA congestion control algo-
rithms [40, 41, 44, 64] primarily deal with Priority-based Flow
Control (PFC) to provide fair sharing between bandwidth-
sensitive applications inside the network. In contrast, Justitia
focuses on RNIC isolation and complements them (§6.3).

Justitia is complementary to FreeFlow [35] as well.
FreeFlow enables untrusted containers to securely preserve
the performance benefits of RDMA. Because it does not
change how verbs are sent to queue pairs, it can still suffer
from the performance isolation problems Justitia addresses.
Justitia can complement FreeFlow to provide performance iso-
lation by implementing Justitia splitter in FreeFlow’s network
library and Justitia daemon in its virtual router.

SR-IOV [55] is a hardware-based 1/O virtualization tech-
nique that allows multiple VMs to access the same PCle
device on the host machine. Justitia design does not interfere
with SR-IOV and will still work on top of it. To provide multi-
tenant fairness, Justitia can be modified to distribute credits
among VMs via shared memory channel similar to [35].

LITE [62] also addresses resource sharing and isolation
issues in RNICs. However, LITE does not perform well in the
absence of hardware virtual lanes (Appendix C.4).

PicNIC [38] tries to provide performance isolation at the
receiver-side engine congestion in software-based kernel-
bypass networks, where it utilizes user-level packet process-
ing instead of offloading packetization to an RNIC. Hence,
PicNIC’s CPU-based resource allocation and packet-level
shaping cannot be applied to RDMA.

Swift [36] also considers receiver-side enginer congestion
in software KBN by using a dedicated enging congestion
window in the congestion algorithm. However, both Swift
and PicNIC ignores sender-side congestion.

Offloading with SmartNICs Recent research in Smart-
NICs has focused on providing programmability and effi-
ciency in hardware offloading [6, 19, 33, 39, 42]. However,
on-NIC packet orchestration leads to tens of microsecond
overhead [19, 57], making performance-related multi-tenancy
support still an open problem.

NICA [18] provides isolation for FPGA-based SmartNICs
by I/O channal virtualization and time-sharing of the Acceler-
ation Functional Units. Justitia focus on normal RNICs and
does not require hardware changes.

Link Sharing Max-min fairness [9, 15, 28, 54] is the well-
established solution for link sharing that achieves both sharing
incentive and high utilization, but it only considers bandwidth-

sensitive applications. Latency-sensitive applications can rely
on some form of prioritization for isolation [3, 25, 63].

Although DRFQ [20] deals with multiple resources, it con-
siders cases where a packet sequentially accessed each re-
source, both link capacity and latency were significantly dif-
ferent than RDMA, and the end goal is to equalize utilization
instead of performance isolation. Furthermore, implementing
DRFQ required hardware changes.

Both Titan [58] and Loom [56] improve performance iso-
lation on conventional NICs by programming on-NIC packet
schedulers. However, this is not sufficient for RDMA perfor-
mance isolation because it schedules only the outgoing link.
Further, Justitia works on existing RNICs that are opaque and
do not have programmable packet schedulers.

TAS [34] accelerates TCP stack by separating the TCP
fast-path from OS kernel to handle packet processing and
resource enforcement. However, TAS does not solve the type
of isolation anomalies Justitia deals with. Justitia’s design
idea can be applied to improve isolation for TAS.

Datacenter Network Sharing With the advent of cloud
computing, the focus on link sharing has expanded to net-
work sharing between multiple tenants [4, 8, 10, 46, 50, 53].
Almost all of them — except for static allocation — deal with
bandwidth isolation and ignore predicted latency on latency-
sensitive applications.

Silo [29] deals with datacenter-scale challenges in pro-
viding latency and bandwidth guarantees with burst al-
lowances on Ethernet networks. In contrast, we focus on iso-
lation anomalies in multi-resource RNICs between latency-,
bandwidth-, and throughput-sensitive applications.

8 Concluding Remarks

We have demonstrated that RDMA’s hardware-based kernel
bypass mechanism has resulted in lack of multi-tenancy sup-
port, which leads to performance isolation anomalies among
bandwidth-, throughput-, and latency-sensitive RDMA appli-
cations across InfiniBand, RoCEv2, and iWARP and in 10,
40, 56, and 100 Gbps networks. We presented Justitia, which
uses a combination of sender-based resource mediation with
receiver-side updates, Split Connection with message-level
shaping, and passive machine-level latency monitoring, to-
gether with a tail latency target as a single knob to provide
network sharing policies for RDMA-enabled networks.
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A Hardware Testbed Summary

Table 1 summarizes the hardware we use for different RDMA
protocols in our experiments.

B Characteristics of Latency- and
Throughput-Sensitive Applications in the
Absence of Bandwidth-Sensitive Ones

Multiple latency-sensitive applications can coexist without
affecting each other (Figure 26). Although latencies increase,
everyone suffers equally. All applications experience the same
throughputs as well.

Similarly, multiple throughput-sensitive applications re-
ceive almost equal throughputs when competing with each
other, as shown in Figure 27.

Finally, throughput-sensitive applications do not get af-
fected by much when competing with latency-sensitive ap-
plications (Figure 28c). Nor do latency-sensitive applications
experience noticeable latency degradations in the presence
of throughput-sensitive applications except for iWARP (Fig-
ure 28a and Figure 28b).
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Figure 29: Impact of increasing background bandwidth-sensitive applica-
tions (sending IMB messages) in InfiniBand.
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Figure 30: [100 Gbps InfiniBand] Performance isolation of a latency-
sensitive application against a bandwidth-sensitive application.

B.1 Adding More Competitors Exacerbates the Anoma-
lies

The lack of protection for the latency-sensitive applications
further exacerbates as more bandwidth-sensitive applications
(or equivalently more QPs) are created. We increase the num-
ber of bandwidth-sensitive applications (each with a single
QP) in our experiment to simulate more realistic datacenter
applications. Although InfiniBand performs relatively well
in the presence of a single background bandwidth-sensitive
application (Figure 3), adding one more competitors incurs
an additional drop of 2.65x and 3.79x in median and 99th
percentile latencies (Figure 29a). With 16 or more bandwidth-
sensitive applications, the latency-sensitive application can
barely make any progress. We observed a similar trend in
other RDMA technologies.

Similarly, a throughput-sensitive application loses 90% of
its original throughput with 16 bandwidth-sensitive applica-
tions (Figure 29b).

Those anomalies illustrate RNIC’s inability to handle mul-
tiple types of applications, which could stem from the limited
number of queues inside the RNIC hardware, increasing Head-
of-Line blocking of small messages.

C Additional Evaluation Results

C.1 100 Gbps Results With/Without Justitia

Similar to the anomalies observed for 10, 40, and 56 Gbps
networks (§3), Figure 30 and Figure 31 show that latency-
and throughput-sensitive applications are not isolated from
bandwidth-sensitive applications even in 100 Gbps networks.
In these experiments, we use SMB messages since IMB mes-
sages are not large enough to saturate the 100 Gbps link.
Justitia can effectively mitigate the challenges by enforcing
performance isolation.



Protocol NIC Switch NIC Capacity
InfiniBand ConnectX-3 Pro | Mellanox SX6036G 56 Gbps
InfiniBand ConnectX-4 Mellanox SB7770 100 Gbps
RoCEv2 ConnectX-4 Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§6.3) ConnectX-4 Lx | Dell S4048-ON 10 Gbps
iWARP T62100-LP-CR | Mellanox SX6018F 40 Gbps
RoCEv2 (DCQCN) (§6.5 and §6.6) | ConnectX-3 Pro | HP Moonshot-45XGc 10 Gbps
Table 1: Testbed hardware specification.
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Figure 31: [100 Gbps InfiniBand] Performance isolation of a throughput-
sensitive application against a bandwidth-sensitive application.

C.2 Real RDMA-based Systems Require Isolation

Besides DARE, highly-optimized RDMA-based RPC systems
also suffer from unmanaged RNIC resources. Here we pick
two representative systems, FaSST [31] and eRPC [32], to
illustrate why they require performance isolation and how
Justitia effectively achieves it. To generate background traffic,
we implemented a simple RDMA-based blob storage backend
across 16 machines. Users read/write data to this storage using
a PUT/GET interface via frontend servers. Objects larger than
IMB are divided into IMB splits and distributed across the
backend servers. This generates a stream of IMB transfers,
and the following RDMA-optimized systems have to compete
with them in our experimental setup.

FaSST is an RDMA-based RPC system optimized for high
message rate. We deploy FaSST in 2 nodes with message
size of 32 bytes and a batch size of 8. We use 4 threads to
saturate FaSST’s message rate at 9.8 Mrps. In the presence
of the storage application, FaSST’s throughput experiences a
74% drop (Figure 32).

eRPC is an even more recent RPC system built on top of
RDMA. We deploy eRPC in 2 nodes with message size of 32
bytes. We evaluate eRPC’s latency and throughput using the
microbenchmark provided by its authors. For the throughput
experiment, we use 2 worker threads with a batch size of
8 on each node because 2 threads are enough to saturate
the message rate in our 2-node setting. In the presence of
the storage application, eRPC’s throughput drops by 93%
(Figure 33b), and its median and tail latencies increase by
67 x and 40X, respectively (Figure 33a).

By applying Jusitita, FaSST’s throughput improves by
2.5x (Figure 32). Justitia also improves eRPC’s median (tail)

sensitive storage application.
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Figure 33: Performance isolation of eRPC running against a bandwidth-
sensitive storage application.

latency improves by 56.9x (32.2x) and its throughput by
9.7x (Figure 33). Note that the throughput of the storage
applications drops to half of the maximum throughput in both
cases because we treat the background application as a whole
(and thus with equal weights to all applications, the SafeUtil
is % of the line rate), which is different from how we treat the
parallel writes in the case of Apache Crial.

C.3 Handling Remote READs

RDMA READ verbs can compete with WRITEs and SENDs
issued from the opposite direction (§4.5) Figure 34 shows
that Justitia can isolate latency-sensitive remote READs from
local bandwidth-sensitive WRITEs and vice versa.

C.4 Justitia vs. LITE

LITE [62] is a software-based RDMA implementation that
adds a local indirection layer for RDMA in the Linux kernel
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to virtualize RDMA and enable resource sharing and perfor-
mance isolation. It can use hardware virtual lanes and also
includes a software-based prioritization scheme.

We found that, in the absence of hardware virtual lanes,
LITE does not perform well in isolating latency-sensitive flow
from the bandwidth-sensitive one (Figure 35) — 122 x worse
99th percentile latency than Justitia. In terms of bandwidth-
sensitive applications using different message sizes, LITE
performs even worse than native InfiniBand (Figure 36). Justi-
tia outperforms LITE’s software-level prioritization by being
cognizant of the tradeoff between performance isolation and
high utilization.

D Sensitivity Analysis

Setting Applications Weights To evaluate how assigning
different application weights (§4.3.1) affects Justitia’s perfor-
mance, we launch 4 bandwidth-sensitive applications each
sending 1MB message together with a latency-sensitive ap-
plication, and we vary the weights of the bandwidth-sensitive
applications. Figure 37 illustrates the impact of setting dif-
ferent application weights with latency target set to 2 us. As
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the weight increases, the value of SafeUtil increases, and thus
more aggregate bandwidth share is obtained for bandwidth-
sensitive applications. Higher SafeUtil leads to worse latency
isolation, but in these experiments the effect of weights on tail
latency performance is not huge. In fact, we do not find much
latency performance degradation as the weight increases, il-
lustrating the effectiveness of Justitia mitigating head-of-line
blocking via its splitting mechanism. The cluster operator can
choose weights based on the priority of the applications in
the cluster based on the Quality-of-Service inside the cluster
(similar to deciding bandwidth resources in a shared environ-
ment), or based on how much each application pays to obtain
the service. Additionally, if multi-tenant fairness is desired,
one can achieve that by modifying how credits are allocated
in Justitia on a per-tenant basis. Justitia supports allocating
tokens at multiple granularities if needed, which can be per-
tenant, per-application, or per group of connections within an
application.

Setting Chunk Size When latency-sensitive applications
are present, Justitia picks the smallest chunk size that still
provides a wide range of bandwidth in case SafeUtil is high
(Figure 10). Here we evaluate how setting the correct chunk
size affects Justitia’s performance. We use the same setting
as the sensitivity analysis of application weights and set the
weight to be 2. Figure 38 illustrates the experiment results
with different chunk sizes. Although a smaller chunk size pro-
vides better latency isolation, it is not able to achieve SafeUtil
and thus waste bandwidth resources. On the other hand, too
big of a chunk size does not provide enough latency isolation.



Setting RefCount To evaluate how sensitive the value
RefCount (§4.3.2) is, we design an experiment where initially
we launch one latency-sensitive application to compete with a
bandwidth-sensitive application. Once the experiment starts,
we add three additional bandwidth-sensitive application, with
a gap of 1 second between their arrival time. We measure
the latency of latency-sensitive application after it completes
10 million messages. Figure 39 plots the results with differ-
ent RefCount values. It turns out that Justitia tracks the tail
latency closely as long as RefCount is not huge. In Justitia,
we set the default value of RefCount =10000 to have some
memory of latency spikes but not longer enough to impact
stable performance.

E Discussion

E.1 Why not simply use hardware priority queues in
the RNIC?

Mellanox NICs have priority queues, but as we mention in
the paper, the number of queues they support is very limited
(e.g., only 2 lossless queues in the RoCE NICs we test out),
and we have illustrated such limited number priority queues
are insufficient to provide isolation in Figure 23. In addi-
tion, the time needed to reconfigure and modify the mapping
from applications’ QPs to the priority queues is in the order
of milliseconds. Last but not the least, it is sometimes also
desireable to provide isolation inside a priority level (e.g.,
bandwidth-sensitive applications and latency-sensitive appli-
cations are both assigned with the same QoS level) where
hardware priority queues will not be sufficient. Thus, using
the priority queues provided by existing hardware does not
solve the isolation problem that Justitia faces.

E.2 Why use only 1 QP in most of the microbenchmark
experiments?

We use a small number of QPs to show that the performance
isolation issues can easily occur even with a very small num-
ber of active connections. We also test with more number of
QPs but the results are placed in Appendix due to limit of
space. In fact, adding more QPs exacerbates the performance
degradation (Figure 30 in the appendix).

E.3 How does Justitia handle the incast experiment?

Justitia leverages receiver-side updates to make sure the cor-
rect minimum rate guarantees are updated correctly at each
sender. Due to large latency spike in the case of a network
incast, senders will mostly like send via the minimum guaran-
teed rate (R,;,) given the latency target will not be met. We
discussed receiver-side updates in Section 4.5 and illustrate
Justitia complements with existing congestion control and
can further help reduce receiver-side engine congestion in
Section 6.5.

E.4 Does reference flow and receiver-side updates cre-
ate additonal congestion in a large scale deploy-
ment?

The reference flow sends small messages (10 Bytes every
20 us) and only amount to a very small Gbps number (1e6 /
20 * 10/ 1e9 * 8 = 0.004 Gbps), which consumes less than
0.1% of the total link capacity even at nodes with only 10
Gbps link, and thus is not likely to generate any hot spot in
the network. When the server broadcasts the receiver-side
update, the message is sent using SEND and RECV with a
message size of 16 Bytes. With even 1000 client machines
this amounts to around 16KB total message size, which is too
small to create a potential congestion problem.

In the case of a large-scale latency-sensitive flow incast,
if congestion indeed happens, DCQCN will work together
with Justitia since it is the major congestion control deal-
ing with fabric congestion. In this scenario, adding more
latency-sensitive flows does not prevent Justitia guaranteeing
bandwidth share of bandwidth hungry applications.

In the current design of Justitia, the bandwidth-sensitive
applications can be rate-limited due to a coexisting latency-
sensitive application which is launched at the same host but
sends data to a different destination. This is intended behavior
to mitigate the anomalies caused by contention at sender-side
RNICs, which happens regardless of whether two compet-
ing applications are targeting the same receiver. We defer a
comprehensive fabric-level solution which involves multiple
senders and receives as our future work.

E.5 How to ensure all cooperating SW uses the right
protocols and protocol versions?

To deploy Justitia, one only needs to install the Justitia Dae-
mon code and a modified Mellanox driver code on the host
machine, and Justitia is compatible with all existing RDMA
protocols, including RDMA over Infiniband and RoCE. In dat-
acenter deployments, cluster management tools like Ansible
can be used to ensure the appropriate code is deployed at each
machine. Additionally, it is straightforward to upgrade Justitia.
Because each server in Justitia operates independently, it is
not necessary for the same version of Justitia to be deployed
across the cluster. Justitia will operate as long as servers are
running some version of Justitia.

E.6 How can Justitia be implemented in hardware?

Without having a software layer to split the large RDMA
operations before they arrive at the NIC, one probably need to
somehow control how the NIC issues PCle reads. Hardware
is often optimized for performance, which in fact is why we
are having such isolation issues, so simply decreasing the
size of each PCle reads will definitely affect its maximum
throughput performance. To bring Justitia into the hardware
design, similar to what we have done in the software layer,
the hardware need to recognize when splitting and pacing is
needed to provide isolation, and when it should process at



maximum capacity for higher utilization.
E.7 Long-term value of Justitia

As RNICs keep evolving, its performance isolation issues
may be mitigated in newer hardware designs. The purpose
of this work is to show that there exist such isolation issues
in current kernel-bypass networks and illustrate one working
approach to mitigate the issue. Design ideas presented in this
work can inform hardware designers when developing future
RNIC as well as programmable NIC designs.

F Future Research Directions

Interesting short-term improvements of this work include,
among others, dynamically determining an application’s per-
formance requirements to handle multi-modal applications,
handling idle applications, and extending to more complicated
application- and/or tenant-level isolation isolation policies.
Long-term future directions include implementing Justitia
logic on an RNIC and integrating Justitia with congestion
control algorithms.

We highlight these immediate next-steps in the following:

Dynamic Classification (Strategyproof Justitia). Appli-
cations may not always correctly or truthfully identify their
flow types. To improve Justitia, it is possible to modify
the driver to monitor QP usage and automatically identify
whether individual connections are bandwidth-, throughput-,
or latency-sensitive. This would provide support for multi-
model applications.

Idle Applications. It is straightforward to support idle ap-

plications in Justitia without wasting bandwidth. If a band-
width hungry app stops sending messages for a long time
but does not exit, the driver and daemon can work together
to stop token issuing when tokens are not being used and a
configurable backlog of tokens has been accumulated.

Justitia at Application and Tenant Levels. Currently,
Justitia isolates applications/tenants by treating all flows from
the same originator as one logical flow with a single type.
However, for an application with flows with different require-
ments or for a tenant running multiple applications compet-
ing with another tenant only running a single application,
more complex policies may be desirable. With Justitia, it is
straightforward to instead support per-tenant, per-application,
or per-flow-group isolation. This is done by allocating tokens
at multiple different granularities.

Co-Designing with Congestion Control. Although Justi-
tia effectively complements DCQCN (§6.3) in simple sce-
narios, DCQCN considers only bandwidth-sensitive flows.
A key future work would be a ground-up co-design of Justi-
tia with DCQCN [64] or TIMELY [44] to handle all three
traffic types for the entire fabric with sender- and receiver-
side contentions (§6.5). While network calculus and service
curves [12, 13, 29, 59] dealt with point-to-point bandwidth-
and latency-sensitive flows, their straightforward usage can
be limited by multi-resource RNICs and throughput-sensitive
flows. At the fabric level, exploring a Fastpass-style central-
ized solution [48] can be another future work.
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