
How Low Can You Go?
Practical cold-start performance limits in FaaS

Yue Tan, David Liu, Nanqinqin Li, Amit Levy
Princeton University

Abstract
Function-as-a-Service (FaaS) has recently emerged as a new
cloud computing paradigm. It promises high utilization of
data center resources through allocating resources on demand
at per-function request granularity. High cold-start overheads,
however, have been limiting FaaS systems’ such potential.

Prior work has recognized that time redundancy exists
across different cold function invocations and has proposed
varied snapshots that capture the instantaneous execution state
so allow for jump-starts through restoration. However, it re-
mains unclear what the cold-start performance limits are as
the previous snapshots employ different techniques and are
designed for different environments. In this paper, we sum-
marize these snapshots from a taxonomic perspective and
present a model that depicts the cold-start performance from
first principles. To approximate the performance limits, we
propose a snapshot design SnapFaaS. We evaluate SnapFaaS
using real-world FaaS functions. Our empirical results prove
SnapFaaS’ efficiency. It is 2-10x as fast as prior work for most
functions and achieves near-optimal cold-start performance.

1 Introduction

Function-as-a-Service (FaaS) is a cloud computing paradigm
where developers write containerized “functions” which the
cloud platform runs and invokes on demand in response
to end-user requests, storage events, and other platform
events [2–4, 9]. Through fine-grained resource allocation and
the flexibility to free resources once a function invocation
completes, FaaS promises high utilization of data center re-
sources, even when workloads are heavy-tailed.

In practice, this promise is encumbered by the resource and
performance overhead of initializing the system abstraction
that FaaS workloads rely on: a full Linux environment and
high-level language runtime.

FaaS systems typically allow developers to write functions
in one of a few high level languages with access to a com-
plete, though often stripped down, Linux distribution. This

affords developers the flexibility to leverage myriad existing
native libraries and programs available for Linux as well as
the richness of a full operating system (e.g. a POSIX-shell,
performant TCP/IP implementations, etc).

Unfortunately, initializing such an environment is costly
compared to the typical FaaS function runtime. While most
functions execute for less than one second [31], initializing the
environment for a function (initializing a virtual machine and
kernel or container, running OS init scripts, starting a language
runtime, and importing libraries) takes 100s of milliseconds
on recent production hardware [13]. This is a problem for both
end-to-end request latency and utilization. Long initialization
times significantly lengthen the otherwise short end-to-end
request latency and tie up CPU and memory that could have
been used respond to other requests.

Researchers in the past few years have termed “cold-starts”
the problem of initializing FaaS functions. Practical systems
mitigate this overhead for popular functions by keeping re-
cently executed functions “warm” for a period—simply keep-
ing the virtual machine or container running—in hopes that
another request for the same function arrives soon [8, 13, 31].
This can improve end-to-end request latency for frequently
requested functions. However, a large portion of requests are
to functions invoked less than once a minute [31] and keeping
all such functions warm sufficiently long is an impractical use
of CPU and memory resources. As a result, keeping functions
warm, while useful, only improves end-to-end request latency
for popular functions and wastes resources when functions
kept warm are not invoked again.

A flurry of research addresses this problem by trying to
improves function cold-start themselves. In particular, much
prior work has correctly identified that initialization is almost
identical for different invocations of the same function. More-
over, much function initialization is redundant across different
but similar functions since they often share a kernel, OS init
system, and run atop one of a small number of language run-
times. Notably, most work uses some form of memoization to
bypass portions of initialization [18,19,29,32,33]—replacing
logical initialization code with load memory directly from

ar
X

iv
:2

10
9.

13
31

9v
1

 [
cs

.D
C

]
 2

7
Se

p
20

21

disk.
These research systems reduce the end-to-end latency to

handle a cold request for a noop function from nearly one
second to around 100ms. However, prior systems target differ-
ent environments and use different memoization techniques,
some of which are complimentary while others conflict. It re-
mains unclear what the lower-bound cold-start is, and whether
prior approaches are sufficient to achieve performance such a
lower-bound.

In this paper, we propose a principled framework for iden-
tifying the pracical limits of cold-start performance and de-
scribe SnapFaaS, a VM snapshot based FaaS system that
achieves significantly better cold-start performance than prior
work and nears the practical lower-bound.

We start by defining cold-starts and function memoization,
and presenting a taxonomy of prior approaches (Section 2).
We then identify the minimal necessary state to handle a func-
tion request (Section 3.1) under practical resource constraints,
and offer a first-principles model that characterizes cold-start
performance (Section 3.2).

We then describe SnapFaaS the design (Section 4) and
implementation (Section 4) of SnapFaaS, including a VM
snapshot technique guided by the model. SnapFaaS uses fixed
memory overhead to cache shared partial snapshots in mem-
ory but loads all function-specific memoized state from disk.
Key to achieving this is coupling the virtual block and network
device configuration, software initialization steps, and snap-
shot orchestration to ensure that the most sharable memory is
initialized before any function-specific state.

We evaluate SnapFaaS and show that it always outperforms
end-to-end request latency in prior systems—typically by 2-
10x. Moreover, SnapFaaS achieves near optimal end-to-end
latency overhead for cold requests (Section 6). We conclude
by discussing what impacts these results should have on future
work in the area.

2 Cold-Start Mitigations in FaaS Today

In FaaS, physical machines multiplex executions of func-
tions by running each in a virtual machine or OS container
and allocating fixed resources (CPU, memory, network, and
ephemeral disk) to each function while it executes or sits idle.
Typically, CPU and memory are the limiting resource and, in-
deed, public FaaS deployments typically bill in CPU-memory
time units.

Function requests are often cold—meaning there is no run-
ning container or VM available running the function available
to service the request. Production systems often keep function
instances “warm” (i.e. they do not kill the VM or container)
for a grace period even if no requests for the function arrive
to improve latency for popular functions [31]. In this work we
only consider cold-starts, though such strategies for optimiz-
ing frequently invoked functions are complementary when
there is an abundance of memory resources.

We also only consider end-to-end request latency since,
unlike in interactive systems, booting a function quickly at
the expense of a delaying the final response by the same
amount is rarely useful in FaaS.

2.1 Reducing Cold-Starts with Memoization
FaaS functions are written in high level languages atop man-
aged runtimes such as Python, JavaScript, Java, Ruby, and C#.
Functions also use native libraries and executables that lever-
age a UNIX-like system interface and standard UNIX shell
utilities (e.g., ls, echo, etc). Most commonly, FaaS platforms
expose a complete Linux-based OS environment to functions.
For example, a function that creates an image thumbnail has
a handler function written in Python that fetches the original
image from an object storage service (e.g., S3), invokes a shell
command to run the ImageMagick convert command-line
utility to generate a thumbnail and, finally, uploads the result
back to the object storage service.

In order to service a request, the OS, language runtime,
libraries, etc. must be initialized to a state that is able to ser-
vice it—namely to invoke the function’s entry point handle
procedure. Initializing the kernel, OS, language runtime, li-
braries and function initialization code generates this state, by
definition. However, it is not necessary to run this code each
time, even though each component may be non-deterministic.

Specifically, FaaS platforms require functions to be written
such that any state that was the result of executing the above
initialization steps is sufficient to correctly invoke the func-
tion’s handle procedure, as long as certain general invariants
are maintained—the real time clock should be correct, the
network should be functional, etc. This makes it possible to
memoize much of the logic performed during cold start and
replace relatively slow initialization execution with relatively
fast data copying.

2.2 Prior Work
Prior work has proposed varied memoization techniques
suited for different environments to improve cold-starts. Cat-
alyzer [19] is designed for gVisor [10], SOCK [29] is de-
signed for Docker [5], SEUSS is designed for unikernel [27]
virtual machine (VM), REAP is designed for the Firecracker
microVM [13].

Despite different runtime environments and technical de-
tails, these techniques share the same high-level ideas—
memoization should capture as much initialization computa-
tion as possible, and the restoration should reduce the amount
of state restored from disk.

One straightforward form of memoization, a snapshot taken
after the function is initialized (a full-function snapshot), cap-
tures an initialized but not yet invoked function’s execution
state as a whole. Catalyzer’s func-image is a such. A func-
image is generated through conventional container checkpoint

2

mechanism. It contains the guest’s (the function and its run-
time environment) memory and metadata (host-side state).
Booting from a func-image reconstructs the guest’s address
space through demand-paging using file-mmap. On-demand
restoration avoids prefetching the whole state from disk but
pays for synchronous page faults at runtime.

REAP recognizes that synchronous page faults incur high
runtime latency penalty and proposes an optimization that
prefetches only an approximated working set. Specifically,
after taking a full-function snapshot where the entire memory
of a pre-initialized function is captured, REAP runs the func-
tion once, observing which pages from the snapshot are actu-
ally accessed during execution. On future executions, REAP
prefetches only that subset of memory, leaving the rest on disk
to be demand-paged. The in-batch prefetching significantly
reduces total latency overhead through saving considerably
many synchronous page faults to disk at runtime.

The other systems take a different route. They cache partial
state that is common and therefore sharable to many functions
in memory. Typically, such partial state results from up to
language runtime initialization but no function initialization.

Catalyzer, to further improve cold-starts, proposes language
template Zygote [16]. A Zygote is an idle container having
completed some initialization from which a new container can
be spawned and specialized. For example, any Python func-
tion can be booted from the same Python Zygote. Functions
are initialized from Zygotes using the fork system call to
create a copy-on-write clone of the Zygote and loads function
code in the clone.

SOCK, similar to Catalyzer, uses Zygotes that have cer-
tain Python packages imported. Its goal is to save package
importing times. SOCK also relies on fork syscall to spawn
new containers but it proposes a different protocol suited for
Docker.

SEUSS uses VM based runtime snapshots cold requests. A
runtime snapshot includes the VM’s physical memory from
the moment the language runtime initialization completes.
Any function in the language can be booted from the same
runtime snapshot. Function initialization then starts from the
restored runtime. SEUSS uses mmap syscall to implement
copy-on-write semantics.

We note that when separating out and caching common
state, the designs above fail to memoize function initialization
as full-function snapshots do. In fact, SEUSS and Catalyzer,
each additionally proposes in-memory “full-function” snap-
shots of some form. Catalyzer has function template Zygotes
and SEUSS has function snapshots. Function template Zy-
gotes are like the language ones but captures function ini-
tialization as well. Function snapshots, enhancing runtime
snapshots, capture any memory modified during function ini-
tialization starting from the correct runtime snapshot.

Caching “full-function” state in memory is fast and can
help burst scalability when a function instance is already run-
ning anyway. However, each stored state consumes memory

proportional to the number of functions so is inappropriate
for speeding up cold-starts for all functions that might be
invoked.

3 Memoization from First Principles

Existing techniques use similar insights—minimize initializa-
tion work by memoizing function state and minimize restora-
tion from disk. However, the techniques are designed for
different systems (VMs, containers, unikernels, etc) with in-
consisent views of system constraints, such as how much
memory is permissible to “waste” on caching states in mem-
ory.

We begin addressing the cold start problem by starting from
first-principles. What is the minimal work that dictates how
fast function memoization can be? How do scalability and
resource constraints dictate where such states must be stored?
Finally, what is the least restoration work an idealized system
should do?

3.1 Required Execution State

We start by looking at the state sufficient and necessary to
service a request, and we use Firecracker microVM as a con-
crete example from now on. The state necessary to service a
request includes:

CPU Registers. Each CPU core allocated to a function in-
stance has a few dozen unique word-sized registers (e.g., the
stack pointer rsp and the instruction pointer rip on x86_64)
required to run.

Virtual Device State. Virtual devices (e.g., VirtIO [12]
block and network devices in a hypervisor) are state machines
with relatively simple states: a few pointers to function mem-
ory for device-VM shared buffers and device specific state,
such as the MAC address of a virtual network device.

Initialized & Useful Memory. Executing a function from
its entry point procedure relies on certain parts of the memory
being resident in the main memory— all memory pages that
are written to during environment initialization and actually
used during execution. This constitutes the largest portion of
the program state— up to 54 MB in our experiments.

These parts include memory pages modified by the kernel,
OS init process, the language runtime, any base libraries used
by the language or FaaS runtime (typically a language-specific
library), and function initialization. Some of these memory
pages are common across similar functions (e.g., those that
use the same kernel, OS userland and language runtime) and
some are specific to each function.

3

3.2 Fundamental Overheads
Snapshots boost cold-starts by memoizing initialization and
turning cold-starts initialization-less. However, restoring a
memoized function is not instantaneous as copying data takes
time as well.

In general, there are two options for restoring state from
disk. First, state can be restored on demand, where as the
function attempts to access missing memory pages, the hyper-
visor loads the page, synchronously, from disk. As a result,
only useful memory pages are loaded and the function can be-
gin executing virtually instantly. However, demand-paging is
synchronous—the function blocks until each page is fetched
into the main memory—pushing the overhead of restoration to
function execution time and preventing batching. Conversely,
eager restoration loads memory pages from disk ahead of
function execution, in batch. This delays the start of a func-
tion and may load pages that are never used, but runs at the
storage medium’s bandwidth speed.

In the best case, snapshots are themselves cached in mem-
ory and restored on demand. Such caching must be done in a
sophiscated way. Because there are many more functions that
could possibly run than could fit in memory on each machine,
any state proportional to the number of functions cannot be
stored long-term in memory. As a result, any function-generic
state, as it can be shared across functions through copy-on-
write semantics, can reside in memory.

The higher latency the storage medium, the more important
it is that snapshot memory be loaded eagerly. While disk is
both lower bandwidth and higher latency than memory, la-
tency is a much more significant factor. For example, modern
RAM has about 50x the bandwidth of an SSD (500Gbps
compared to 10Gbps), RAM latency is 5 orders of magnitude
faster than SSD read latency (100ns compared to 16us).

As a result, CPU-registers, virtual device state, and
function-specific memory should reside on disk and be re-
stored eagerly while function-generic memory should reside
in memory and be restored on demand.

In summary, to reconstruct the state of a VM prepared to
handle a request, we must:

1. load CPU registers and restore virtual device state (c)

2. Eagerly restore from disk non-zero memory pages
unique to each function (pgsunique)

3. execute any remaining initialization code who’s resulting
state cannot be captured by a snapshot (e.g. reading and
deserializing the request payload) (init)

4. And copy from memory any snapshot pages that can
be shared amongst functions that are written to during
function execution (pgsshared)

Only the first two steps can occur concurrently. CPU reg-
isters, virtual device state, and any memory not paged on

demand must be available before any remaining initialization
which, in turn, must run before the function begins executing.

Therefore, given the memory latency latmem, disk band-
width bwdisk, and page size P (typically 4KB), the minimum
overhead to end-to-end performance that must be incurred by
any snapshot restoration strategy is given by:

max(c,(
pgsunique ×P

bwdisk
))+ init +(pgsshared × latmem) (1)

We can see by the model that to achieve the best cold-start
performance is to minimize each of these terms by: splitting
snapshots such that the most pages are sharable amongst many
functions but are seldom written to; identifying the minimum
number of unique pages that must actually be restored for
each function; and minimizing the amount of initialization
code necessary for each function invocation.

4 SnapFaaS

Following the goals above, we propose SnapFaaS a snapshot
based on Firecracker microVM that testifies the cold-start
performance limits.

At a high-level, the design consists of one in-memory base
snapshot for each language runtime and one diff snapshot
and one working set (WS) file, both on-disk, for each function.
There are two key techniques accompanying the design—1)
use of two file systems to allow easy base/diff separation
and 2) coupled guest-host network configuration.

4.1 Maximize Shared Pages, Minimize Shared
Written Pages

The first goal is to maximize the number of in-memory
sharable pages (i.e. minimize pgsunique) and minimize the
ratio of these sharable pages that are written to during exe-
cution. SnapFaaS accomplishes this by generating separate
snapshots: a base snapshot for the common “runtime” and a
diff snapshot for a function and the libraries it imports.

The base snapshot includes memory initialized by the ker-
nel, OS, language runtime, base libraries, and the SnapFaaS
runtime. Because all functions use one of a small number of
language-runtimes, each such base snapshot can be shared
across many functions. The diff snapshot includes memory
initialized or modified by the function itself and the libraries
it imports. This may include memory pages that were also
initialized in the base snapshot. In this case, diff snapshot
values override base snapshot values.

While functions may use any of this base snapshot during
execution, each function uses a relatively small portion of this
memory. Moreover, as shown in Figure 1, functions write to
very few of these shared memory pages during execution. At
most 15%, and more typically fewer than 5%, of pages present
in the base snapshot are written during function execution.

4

The result is that pgshared is small and, consequently, few
pages are copied on demand.

Key technique—use of AppFS. In order to facilitate layer-
ing of diff snapshots on top of base snapshots, a SnapFaaS
VM uses an application file system (AppFS) in addition to a
must root file system (RootFS) that stores boot-critical pro-
grams like /init and OS & language utilities.

Functions can be packed into the RootFS as well. However,
it will be much trickier to ensure that base snapshots do not
include the result of executing any function-specific initial-
ization. This is because once a block device is mounted, file
system metadata, such as the root inode, are cached in mem-
ory by the Linux kernel and, as a result, a snapshot captures
specific layout of the file system.

Use of AppFS solves the layout problem because the AppFS
is not mounted when the base snapshot is generated. Addi-
tionally, the separation easily realizes one root file system for
each supported language. SnapFaaS currently provides four
RootFS-es, Python3, Node.js, Java, and Go.

4.2 Minimize Unique Pages
The second goal is to identify the minimum set of unique
pages that must be actually resident in memory. To achieve
this goal, SnapFaaS draws on REAP’s technique [32].

Similar to REAP, SnapFaaS approximates a function’s
working set using the working set from one previous exe-
cution. Then SnapFaaS eagerly reads in the working set and
demand-paging the rest. Note that SnapFaaS only applies this
technique to diff snapshots since the purpose is to minimize
the number of pages fetched from disk into memory.

4.3 Minimize Initialization Computation
SnapFaaS captures nearly all initialization code in the base
and diff snapshots. Capturing some of this is trivial. For
example, initialization in libraries that sets up data structures,
loads an ML model from disk, etc, are independent of in-
variants outside the function VM, so are captured entirely by
the memory encoded in the diff snapshot. However, some
other initialization code captures state outside the VM and,
therefore, requires tight coupling with the FaaS platform.

Key technique—coupled guest-host network configura-
tion. For example, the TCP/IP stack in Linux has internal
states the VM’s local IP address, the gateway address, MAC
addresses for both the virtual Ethernet device and physical
Ethernet device, ARP tables, etc. All of these must be valid for
each function instance restored from a snapshot to avoid re-
quiring DHCP to discover new IP addresses, ARP to discover
routes, and other dynamic network configuration tasks.

To accomplish this, the network initialization code in the
RootFS configures the network in accordance with strong
guarantees from the hypervisor regarding the network. VMs

ocr

alexa-reminder

img-resize

alexa-door
lorem

sentiment-analysis lorem
thumbnail

audio-fingerprint
matmul

thumbnail tpcc
lorem

sentiment-analysis
0.00

0.05

0.10

0.15

CO
W

 R
at

io

nodejs python3 java go

SnapFaaS

Figure 1: Copy-on-write ratio. The ratio is calculated as the
number of memory pages that are modified by the language
runtime initialization and are written to during execution over
the total number of shared in-memory pages. The numbers
are from a single run.

use a static local IP address connected to a virtual bridge
device on the hypervisor with a fixed IP address and MAC ad-
dress. And this state is captured in the base snapshot which is
shared across different function instances. In order for differ-
ent VMs on the same host to use the same local IP addresses,
VMs’ virtual network devices are attached to a software Eth-
ernet bridge on the host.

This design allows 1) that any VM to use the bridge as the
gateway device which has a well-known IP address and 2)
that different VMs on the same host with the same IP address
to communicate with the outside since an Ethernet bridge
uses hardware MAC addresses as identification. 1

5 Implementation

5.1 Software Stack
In addition to Firecracker microVMs in which user code runs,
there are other components along the software stack. Pre-
cisely, each VM runs alongside its Firecracker virtual ma-
chine manager (VMM) process and on top of Linux KVM
hypervisor [21]. Linux KVM virtualizes CPU and memory
and the VMM process assists with I/Os.

VM Pre-configuration. The VMM process is also respon-
sible for pre-configuring a VM. Before booting a VM from ei-
ther the kernel or snapshots, the system needs to pre-configure
it, including registering a new VM with Linux KVM asking
for CPUs & memory and attaching virtual I/O devices to the
VM after registration.

1Note that this setup only enables VMs to initiate connections, which
is desirable as FaaS functions are not network addressed like conventional
servers.

5

Common
States

+
Function
States

Common
States

Function
States

Common
States

Function
Source

Main
memory

Disk

WS

WS

REAP SEUSS SnapFaaS (SnapFaaS-)

Figure 2: Comparison of SnapFaaS with the existing snap-
shots for cold-starts. REAP captures the execution state as
a whole and eagerly loads the working set. SEUSS restores
cached common states on demand and then import functions
from the source. SnapFaaS caches common states and store
function states on disk and eagerly loads only the working set.
(SnapFaaS- is SnapFaaS without working set estimation.)

VM Organization. In addition to a stripped-down Linux
kernel, two block devices formatted to RootFS and AppFS and
an IP network device, each VM has a VSOCK [12] (virtual
socket) device to communicate with the host, i.e., receiving
runtime arguments and returning results.

We follow the guide provided by the Firecracker team
about how to build file system images [7]. File system im-
ages are based on Alpine Linux 3.10 [1]—a distribution of
Linux that uses the lightweight BusyBox UNIX utilities and
OpenRC [11] init system—and a Linux kernel based on
version 4.20 compiled with the minimal configurations.

5.2 SnapFaaS Generation and Restoration
Generation. The VMM process and the custom language-
specific runtime entry point running inside the VM coopera-
tively capture the VM’s execution state. A custom language-
specific runtime entry point is a script (for scripting languages
like Python and JavaScript) or an executable (for compiled
languages like Go) that when executed initializes the language
runtime including executing basic library code used by itself.
It also mounts the AppFS. More importantly, it makes hyper-
calls that pause the VM and cause a context switch from the
VM in guest mode to the VMM in host user mode.

To create a base snapshot, we boot a VM normally from
the kernel using the RootFS, with a placeholder AppFS im-
age. The VMM enables dirty-page tracking in order to tell
which pages must be recorded in the snapshot. Once language
runtime initialization completes, the language-specific run-
time entry point immediately makes a hypercall from each
virtual CPU core. This action pause the VM and signals the
VMM to capture the VM’s execution state, i.e., the state of
memory, CPU, and I/O devices and generate the base snap-
shot. This snapshot consists of a sparse file containing only

import lorem
def handle(event):
return {
'body': lorem.sentence(),

}

(a) Entry-point procedure handle. The runtime starts function ex-
ecution by calling handle. handle requires one parameter which
contains any runtime arguments and returns an object.

/
workload
package/

lorem/
__init__.py
data.py
text.py

lib/
bin/

(b) Tarball structure. workload should contain procedure handle.
Packages, libraries, and binaries should be in directory package,
lib, and bin, respectively.

Figure 3: SnapFaaS programming interface (Python3 lorem
example). This figure shows the content of the tarball that the
developer submits to SnapFaaS to register a function.

dirty memory pages, as well as a JSON file describing non-
memory state, the state of CPU and I/O devices. The resulting
snapshot is stored in a tmpfs file system on the host for easy
in-memory storage.

To creates a diff snapshot for a particular function, we
begin by booting a VM through restoring the correct base
snapshot with the function’s actual AppFS attached to the VM
instead. As a result, the VM continues execution inside the
language-specific runtime entry point immediately after the
hypercall described above. The runtime entry point continues
by mounting the AppFS and loading and initializing the func-
tion in a language-specific way—e.g., in Python and Node.js,
importing the workload file is sufficient to execute initializa-
tion code in the global scope (such as importing third-party
libraries) while the Go entry point loads an ELF “plugin” and
explicitly calls an Init that the function is expected to export.

Once the function is initialized, without actually invoking
it, the runtime entry point pauses the VM and signals the
VMM to generate the diff snapshot by, again, making a
hypercall from each virtual CPU core. During this process, the
VMM enables dirty page tracking as well and diff snapshots
contain only pages that are marked dirty during this time. For
memory state, in addition to dirty memory pages themselves,
a diff snapshot includes an explicit record of dirty pages
relative to the base snapshot. Restoration from base and
diff snapshots uses this metadata. For non-memory state,
diff snapshots use a similar JSON file.

6

Cluster Manager
Worker machine

Memory Bus

I/O

Memory

Disk (slow, persistent)

CPUscontroller

Python3
RootFS

Lorem
AppFS

Cluster Scheduler

Cached VM

Python3
RootFS

python3 base

Lorem
AppFS

lorem-python3 diff

replicate

b1 b2

b2 b2
b3

a1

a2

lorem-python3 diff

c1

c5

c3 (cold-start)

c3 (warm-request)

c2

a1-2: system bootstrap b1-3: function registration c1-6: request execution

c4

c6

Client

Developer

request

python3 base

VM

WS
WS

Figure 4: Overview of a FaaS system with SnapFaaS deployed.

To generate a WS file, similar to generate a diff snap-
shot, we begin by restoring base and diff snapshots all on-
demand to allow us to track page access. After execution, we
record the set of pages that are accessed during execution
and are file-mmaped from the diff snapshot. This set is the
working set of the diff snapshot.

Restoration. To restore the VM’s memory, the VMM file-
mmaps the base snapshot into private memory. As a result,
memory pages from the base snapshot are loaded copy-on-
write, and any pages not modified by function execution will
be shared among VMs running the same language runtime.
The VMM then copies each page in the diff snapshot into
private memory using the system call readv.

Or if the working set optimization is applied, the VMM file-
mmaps non-working-set pages of the function’s diff snap-
shot into private memory and copies the working set into the
VM’s private memory.

To restore the non-memory states, the VMM restores non-
memory states encoded in the diff snapshot’s JSON file,
including the state of CPU and I/O devices.

5.3 SnapFaaS Deployed
Programming Interface. SnapFaaS assumes a similar pro-
gramming interface to existing public FaaS offerings [2]. To
register a function, the developer submits a tarball of the func-
tion source including all dependencies. The system then re-
formats the tarball to a AppFS.

Figure 3 is an example of the function source and the tar-
ball structure. Developers should define a procedure named
handle which is the entry point of function execution.
handle takes one argument event and returns a serializable
object. The event argument contains inputs if any. Figure 3a
shows an example of a simple Python3 function.

To prepare a tarball, developers should name the file that

defines handle as workload (Figure 3b). Additionally, third-
party dependencies, native libraries and native binaries are in
subdirectories package, lib, and bin, respectively.

System Workflow. Figure 4 shows how a FaaS system em-
ploying SnapFaaS looks like: a cluster scheduler, a cluster
manager2, and a fleet of worker machines each of which has
two-tiered storage: memory and slow, persistent disk. Mem-
ory stores base snapshots while disk stores WS files, diff
snapshots and file system images.

System workflow is as follows.
During system bootstrap, for each supported language, the

cluster manager generates a RootFS image for each supported
language that serves as the boot device. Next, the cluster man-
ager generates a base snapshot using the language’s RootFS
image. Finally, the cluster manager replicates these RootFS-
es and base snapshots to each worker machine’s disk and
memory respectively.

At function registrations and updates, the cluster manager
converts tarballs into AppFS images and generates diff snap-
shots using AppFS images with the correct base snapshot
and RootFS image. Then the manager invokes functions with
mock arguments to create WS files. At last, the cluster man-
ager replicates these WS files, diff snapshots and AppFS
images to each worker machine’s disk. AppFS images need
replicating because the function may dynamically loads pack-
ages or invokes binaries that’s stored on the AppFS.

For client requests, the cluster scheduler is the gateway.
Upon receiving a request, the cluster scheduler dispatches it
to a worker machine. The controller running on the worker
machine either invokes the requested function in a cached idle
function instance (warm-request) or launch a new instance
(cold-start) in a VM with the correct base and diff snapshots
plus WS files. Once the function finishes execution, it sends

2The cluster scheduler and the cluster manager are not within this paper’s
scope.

7

the results to the controller. The controller then returns the
response to the client.

6 Evaluation

We evaluate SnapFaaS by answering the following questions:

• How do SnapFaaS and SnapFaaS− (SnapFaaS without
working set approximation) perform compared with the
existing snapshots?

• What are cold-start overhead breakdowns like for dif-
ferent snapshots following the model we proposed in
Section 3?

6.1 Experimental Setup

Hardware. We use CloudLab’s [20] c220g5 machines. A
c220g5 has two Intel Xeon 10-core CPUs at 2.20 GHz, DDR4-
2666 memory, one SATA SSD with 500 MB/s peak sequential
read bandwidth and 50 us random read latency. We disable
hyperthreading [13]. The host operating system is Ubuntu
16.04.1 with kernel version 4.15.0 and the guest operating
system is Alpine Linux 3.10 with kernel version 4.20.0.

Benchmarking functions. We implemented 14 functions
in four languages3 (Table 1) that represent a variety of com-
mon FaaS applications: text, audio, and image processing;
online transaction processing; and smarthome/IoT applica-
tions.

Many of these applications have library dependencies, in-
cluding native libraries and executables. For example, the
Python3 thumbnail function depends on the Pillow pack-
age which requires the libjpeg native library. The Node.js
ocr function is a thin wrapper around Tesseract OCR exe-
cutable, and the Node.js alexa-reminder function adds and
retrieves reminder items stored in CouchDB over the network.

SEUSSSF and REAPSF In order to compare SnapFaaS with
the existing snapshots, we implemented SnapFaaS versions of
them, REAPSF and SEUSSSF . We refer to SnapFaaS version’s
REAP [32] as REAPSF and implement it as eagerly loading
the working set and demand-paging the rest of a full-function
snapshot. We refer to SnapFaaS version’s SEUSS-like de-
signs [18, 19, 29] as SEUSSSF and implement it as copy-on-
write sharing a in-memory base snapshot and importing the
function from its on-disk source.

Function inputs. For SnapFaaS and REAPSF experiments,
we use the same function inputs that we use to generate the
working sets.

3All applications are available at URLremovedforanonymity.

6.2 Snapshot Performance Comparison
Figure 5 compares the cold-start latency of SnapFaaS− and
SnapFaaS with REAPSF and SEUSSSF .

Cold-Start Boot Latency. We measure boot time for cold-
start requests from when the VMM process starts to when the
VM is ready to accept client requests. Figure 5a shows boot
latencies normalized to SnapFaaS.

Without the working set optimization, it is already the case
that SnapFaaS− is always faster than REAPSF and always
at least comparable to SEUSSSF . Specifically, SnapFaaS−
is up to 20.2x as fast as REAPSF and up to 8.8x as fast as
SEUSSSF .

With the working set optimization, SnapFaaS is always
at least comparable to SnapFaaS−, REAPSF and SEUSSSF .
Specifically, SnapFaaS is up to 1.9x as fast as SnapFaaS−,
up to 18.8x as fast as REAPSF , and up to 12x as fast as
SEUSSSF .

Cold-Start Function Execution Time. We measure cold-
start function execution time from the moment the host sends
a request to the VM until the host receives a response. Fig-
ure 5b shows execution latencies normalized to SnapFaaS.

With fewer copy-on-write page faults, SEUSSSF has com-
parable or faster execution latencies than SnapFaaS− and
SnapFaaS. Specifically, SnapFaaS− and SnapFaaS are
16.4% and 13.4% slower, respectively, than SEUSSSF for the
Go sentiment-analysis function.

With no shared pages across function instances, REAPSF
avoids all copy-on-write costs incurred by SnapFaaS− and
SnapFaaS during execution. For the minimal Python3 lorem
function, for example, SnapFaaS− is 68.9% slower than
REAPSF and SnapFaaS− is 74.7% slower REAPSF for Go
function sentiment-analysis. However, our results show
that REAPSF ’s execution latencies are unpredictable, partic-
ularly if REAPSF misses some pages used during execution,
which much be fetched on-demand from disk.

In general, longer-running functions, such as ocr in Java
and alexa-reminder in Node.js, see smaller variations in
execution latencies across the four snapshot designs.

Cold-Start End-to-End Latency. The end-to-end latency
measures from the start of VMM process to when the host
receives a response from the VM. This is the sum of cold-
start boot latency and cold-start execution time and is the
most important latency metric for FaaS workloads. Figure 5c
shows end-to-end latencies normalized to SnapFaaS.

Without the working set optimization, SnapFaaS− is al-
ready at least comparable to the existing SEUSSSF and
REAPSF for all functions. Specifically, SnapFaaS− is up
to 10.1x as fast as REAPSF for Node.js function lorem
and up to 5.3x as fast as SEUSSSF for Python3 function
sentiment-analysis.

With the working set optimization, SnapFaaS further im-
proves the speed-up. Specifically, SnapFaaS is up to 1.8x as

8

URL removed for anonymity

Name Description Language Libraries & Binaries
lorem Generate a random lorem text string Node.js, Python3, Go lorem
sentiment-analysis Textual sentiment analysis with NLP models Python3, Go nltk, textblob etc.
thumbnail Generate a thumbnail picture Python3, Java PIL/ImageMagick, libjpeg etc.
ocr Text recognition with Tesseract OCR Node.js tesseract, tessdata, libjpeg etc.
img-resize Resize a large image to 5 smaller sizes Node.js jimp, node-zip
alexa-door Control door lock with Alexa Node.js ask-sdk-core, request etc.
alexa-reminder Setting up reminders with Alexa Node.js ask-sdk-core, request etc.
audio-fingerprint Generate acoustic fingerprints of audio files Python3 pyacoustid, audioread etc.
matmul Matrix multiplication Java None
tpcc TPC-C benchmark Java java.sql

Table 1: Benchmarking functions

ocr

alexa-reminder

img-resize

alexa-door
lorem

sentiment-analysis lorem
thumbnail

audio-fingerprint
matmul

thumbnail tpcc
lorem

sentiment-analysis

1

5

10

15

no
rm

al
ize

d
bo

ot
 la

te
nc

y

nodejs python3 java go

SnapFaaS SEUSSSF REAPSF

(a) Boot latency normalized to SnapFaaS.

ocr

alexa-reminder

img-resize

alexa-door
lorem

sentiment-analysislorem
thumbnail

audio-fingerprint
matmul

thumbnail tpcc
lorem

sentiment-analysis

0.5

1.0

1.5

no
rm

al
ize

d
ex

ec
 la

te
nc

y

nodejs python3 java go

SnapFaaS SEUSSSF REAPSF

(b) Execution latency normalized to SnapFaaS.

ocr

alexa-reminder

img-resize

alexa-door
lorem

sentiment-analysis lorem
thumbnail

audio-fingerprint
matmul

thumbnail tpcc
lorem

sentiment-analysis

1

5

10

no
rm

al
ize

d
e2

e
la

te
nc

y

nodejs python3 java go

SnapFaaS SEUSSSF REAPSF

(c) End-to-end latency normalized to SnapFaaS.

0 50 100 150 200 250 300 350
Function normal execution time (ms)

1

10

20

30

en
d-

to
-e

nd
 sp

ee
d-

up
 o

ve
r r

eg
ul

ar

better

optimal, R2 = 0.942
SnapFaaS, R2 = 0.933
SnapFaaS , R2 = 0.931
SEUSSSF, R2 = 0.801
REAPSF, R2 = 0.071
regular

(d) SnapFaaS, SnapFaaS−, SEUSSSF , and REAPSF end-to-end
speed-up over regular vs regular’s function execution time.
regular stands for booting a function through the regular VM booting
process. optimal includes only the execution time of warm functions
and thus represents the speed-up of an optimal cold-start strategy.

Figure 5: Snapshot performance comparison. We take the latency average for 100 rounds and normalize SnapFaaS’s latencies to
1 (the blue line). For figure (a) - (c), being above the blue line means being slower than SnapFaaS.

fast as SnapFaaS− for Go function sentiment-analysis,
is up to 9.9x as fast as REAPSF for Node.js function lorem,

and is up to 6.1x as fast as SEUSSSF .

For long-running functions, such as Java function ocr, all

9

REAPSF SEUSSSF SnapFaaS− SnapFaaS
A B C D A B C D A B C D A B C D

Go
lorem 6.9 160.3 9.1 0.9 4.6 0.6 42.4 -0.2 5.5 19.7 3.1 0.6 5.7 10.3 5.0 0.8
sentiment-analysis 7.7 448.5 4.8 5.4 4.6 0.7 546.7 0.2 7.3 144.9 6.0 6.0 6.9 69.9 5.9 7.6

Java
matmul 7.1 417.2 17.7 186.5 5.0 1.0 43.0 11.2 6.3 28.0 15.4 14.4 6.3 23.9 13.7 14.4
thumbnail 7.5 436.3 24.9 6.2 4.5 0.7 55.9 18.8 5.9 29.4 22.6 22.2 6.1 26.6 22.0 22.7
tpcc 6.9 408.3 16.4 102.7 5.1 0.8 47.1 96.3 6.5 29.7 14.7 134.0 6.5 28.7 14.7 130.1

Node.js
alexa-door 9.0 528.8 14.3 13.7 7.6 1.1 397.3 1.6 9.0 70.4 12.6 15.5 8.7 50.9 12.2 15.7
alexa-reminder 6.9 444.4 15.2 7.9 4.6 0.7 114.7 -3.2 6.3 33.0 7.0 24.6 6.2 31.9 7.2 25.9
img-resize 7.6 507.0 14.7 33.7 4.7 1.0 417.9 18.2 6.4 61.1 10.4 10.4 7.2 57.9 9.8 40.2
lorem 7.5 374.5 19.1 7.0 4.7 0.7 41.7 1.9 7.6 16.8 5.1 4.5 7.6 14.4 7.2 5.3
ocr 7.1 466.0 14.6 133.7 4.5 0.7 34.4 255.9 5.0 15.1 5.6 276.1 6.0 15.0 6.9 280.2

Python3
audio-fingerprint 7.3 423.5 5.5 7.7 4.8 0.6 744.9 1.9 7.4 87.8 6.9 16.1 7.4 50.1 6.8 13.2
lorem 7.1 235.2 6.4 1.6 5.1 0.8 54.6 0.6 7.0 26.7 6.0 2.6 7.3 15.4 4.6 1.9
sentiment-analysis 7.6 593.0 6.4 18.9 5.3 0.7 1292.3 5.3 8.0 133.5 7.2 20.7 7.8 108.0 7.1 22.2
thumbnail 7.0 312.6 5.3 25.5 4.7 0.6 157.8 1.3 5.8 43.1 5.5 13.1 5.4 31.4 4.5 9.8

Table 2: Cold-start overhead breakdowns in milliseconds. The numbers are averages from the same 100 rounds as Figure 5. The
breakdown follows our model max(c,(pgsunique×P

bwdisk
))+ init +(pgsshared × latmem). A-D stands for the model’s four clauses from

left to right. Latencies in D column are the difference between the measured latency and regular’s latency. regular stands for
booting a function normally from the kernel.

strategies are similar since the execution time dominates. Fig-
ure 5d shows the trend that shorter functions experience higher
speed-ups. Additionally, Figure 5d shows that SnapFaaS and
SnapFaaS− are the closest to the optimal case when there is
no cold-start overhead.

6.3 Cold-Start Overhead Breakdown
Table 2 presents cold-start latency overhead breakdowns of
SnapFaaS−, SnapFaaS, SEUSSSF , and REAPSF .

Recall that we model cold start latency overhead as

max(c,(
pgsunique ×P

bwdisk
))+ init +(pgsshared × latmem).

Our empirical results show the follows where A to D stands
for the model’s four clauses from left to right.

A. There is a constant overhead that the system spends pre-
configuring the VMM process and the VM and restoring
non-memory states, e.g., CPU registers.

B. For SnapFaaS−, SnapFaaS, and REAPSF , there is a non-
constant overhead that the system spends restoring memory
from the disk while this overhead for SEUSSSF is constant
and small because SEUSSSF only does file-mmaps to restore
memory.

Figure 6 shows all evaluated functions’ eagerly restored
memory sizes along with their full-function snapshot memory
sizes. We can see that SnapFaaS− by caching common states
reduces more memory than REAPSF and that SnapFaaS, with
the working set optimization, can further reduce memory
sizes. The large memory size reductions leads to reductions

in cold-start boot time (Figure 5a) and results in reductions in
cold-start end-to-end latency (Figure 5c).

Note that this restoration latency does depend on disk
bandwidth utilization. Our results do show various disk band-
width utilizations intra and inter snapshot strategies. For ex-
ample, under REAPSF , Node.js function alexa-door only
consumes 81 MB/s bandwidth on average while Node.js func-
tion alexa-reminder consumes 100 MB/s bandwidth on
average and alexa-door under SnapFaaS− consumes 355
MB/s. Our implementation simply uses the readv system
call. Optimizations may be possible particularly for REAPSF .
However, we want to point that even if REAPSF can manage
to consume the same bandwidth as SnapFaaS−, it still fun-
damentally loads significantly more memory from disk into
memory compared with SnapFaaS−.

C. For SnapFaaS−, SnapFaaS and REAPSF , there is a
more or less constant overhead that the system spends doing
remaining initialization work, connecting to the host through
VSOCK in this case. For SEUSSSF , in contrast, the system
spends extra time importing the function from the source in
addition to connecting to the host.

D. Empirically, there exists execution slow-down for all
snapshot strategies even though in theory REAPSF should
observe no slow-downs because the inputs during evaluation
are the same as during working set generation. The results
suggest that executions are not necessarily deterministic (e.g.
languages’ garbage collecting) causing accesses to on-disk
pages. For the rest three, SnapFaaS− and SnapFaaS consis-
tently experience higher slow-down than SEUSSSF . This fol-
lows from that, compared with SnapFaaS− and SnapFaaS,

10

ocr

alexa-reminder

img-resize

alexa-door
lorem

sentiment-analysis lorem
thumbnail

audio-fingerprint
matmul

thumbnail tpcc
lorem

sentiment-analysis

10
20
30
40
50
60
70
80

Sn
ap

sh
ot

 M
em

or
y

Si
ze

 (M
B) nodejs python3 java go

SnapFaaS SnapFaaS REAPSF full-function

10
20
30
40
50
60
70
80

Figure 6: Sizes (MB) of memory eagerly restored from the disk. Compared with the sizes of full-function snapshots, REAPSF ,
SnapFaaS−, SnapFaaS reduces the sizes of memory eagerly restored from the disk. SnapFaaS− achieves the reduction by
caching common states with no working set approximation.

1 48 96 144 192 240
Machine Memory (GB)

20

0

20

40

60

80

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t u
sin

g
Sn

ap
Fa

aS
 (%

)

90% cold starts
50% cold starts
30% cold starts
0% cold starts

Figure 7: Throughput difference using SnapFaaS vs regular
under simulated workloads. When available memory is small
and there no cold-start requests, SnapFaaS’ memory overhead
hurts throughput. However, when 30% or more requests result
in cold-starts, SnapFaaS improves through 25%-77%.

SEUSSSF does more initialization work after restoring from
the base snapshot so that it experience fewer copy-on-write
faults during execution.

6.4 Memory Overhead

SnapFaaS requires each worker to have an in-memory copy
of the base snapshot for each supported runtime. For the
runtimes we implemented, this includes 60MB for Node.JS,
40MB for Python, 60MB for Java, and 36MB for Go. In total,
each worker incurs a memory overhead of 196MB. On our
experimental machines, this amounts to 0.1% and 0.3% of the
available 192GB and 64GB of memory, respectively.

Less available memory means fewer functions can run

concurrently on the same machine. Conversely, faster cold-
start latency means that throughput per available slot is higher.
How do these competing forces affect overall throughput?

Figure 7 shows the throughput difference using SnapFaaS
and regular VM initialization under a simulated workload
with varying proportions of requests resulting cold-starts. As
expected, with no cold starts (i.e. all requests are for recently
invoked functions) SnapFaaS has lower throughput because it
can run fewer VMs concurrently. However, with as few as 30%
of requests resulting in cold starts, SnapFaaS has 25% higher
throughput. When most requests result cold-starts SnapFaaS
has over 75% higher throughput than regular initialization.

7 Related Work

Prior work has looked into mitigating cold-start overhead
with checkpoint/restore techniques [24, 33]. Snowflock [24]
targets stateful applications in traditional cloud computing en-
vironments. Their VM forks abstraction achieves sub-second
VM cloning. Replayable Execution [33] is recent work that
target FaaS applications. Replayable Execution uses check-
pointing and demand paging to boot a JVM environment
in 54ms. Snapshots in Replayable Execution is taken after
JVM initialization and before loading user applications. Their
JVM initialization captures the maximal common state for
their Java workload. This approach is equivalent to our base
snapshots.

Numerous research projects propose lightweight virtualiza-
tion techniques. Unikernels [22, 27] reduce startup latency by
minimizing the guest OS based on applications and removing
kernel-userspace isolation. No FaaS systems currently use
unikernels in production, but SEUSS [18] shows that snap-
shots can be used with unikernels to further reduce FaaS cold
start latency. LightVM [28] improves startup latency by op-

11

timizing the Xen hypervisor. ukvm [34] builds a specialized
virtual machine monitor on top of KVM for unikernels to
reduce startup latency. Solutions that improve hypervisor or
VM monitor performance can further benefit SnapFaaS and
are orthogonal to our approach.

Some CDN providers have begun using JavaScript and
WebAssembly based sandboxes to run FaaS-style compu-
tations [4, 6]. Some research projects also explored using
language sandboxes to run FaaS workloads. Boucher et al.
proposed using Rust’s static types to isolate FaaS computa-
tions [17], and Splinter [23] uses a compile-time sandbox
based on Rust’s static types to enable low-resource sandbox-
ing of computations running in a fast key-value store.

In general, language-based approaches offer orders of mag-
nitude faster cold start time and lower memory overhead
compared with virtualization-based sandboxes. The above
systems all report cold start latencies on the order of 10s of
microseconds. However, they trade generality: none of these
approaches can offer a full Linux environment — Rust and
JavaScript sandboxes in particular only support applications
written in those languages. Many FaaS workloads rely on a
variety of other languages as well as a wide variety of exist-
ing code designed to run on Linux such as machine learning
libraries and image compression tools.

8 Discussion

Our results show that Linux VM-based snapshots have a
lower-bound of about 15 ms for our setup if the SSD peak
bandwidth is achieved. While there is an open space of snap-
shot designs, we argue that new designs cannot significantly
improve on our results without breaking the FaaS abstrac-
tion. This has important implications for practitioners and
researchers in this space. Cold-start overheads limit the uti-
lization of FaaS significantly when execution times are very
low. As a result, when targeting environments with low la-
tency requirements [6, 25] system builders should avoid the
containerized Linux abstraction. Instead, FaaS systems that
target high cluster utilization and low latency must sacrifice
the portability and flexibility of a Linux interface in favor of
language-specific or other limited APIs with better fundamen-
tal performance characteristics.

9 Limitations & Future Work

Using snapshots restoration to alleviate cold-start latency ex-
acerbates two important security concerns. Instances spawned
from the same snapshot share a large portion of their base
memory. This helps performance but renders attack (e.g. from
a malicious request payload) mitigation techniques based on
address space layout randomization (ASLR [14]) ineffective.
Recent work [15,26,35] has shown that re-randomizing mem-
ory and code can be done with reasonable overheads in many

cases [35]. We intend to evaluate the use of re-randomization
within FaaS functions on SnapFaaS. Similarly, using copy-on-
write shared pages for kernel and language runtime memory
introduces the potential for cache-based timing channels be-
tween functions on the same machine [30].

Our current implementation of SnapFaaS has some known
limitations that we are actively fixing. We currently do not
capture the VSOCK device, the host-guest channel, in either
snapshots. As a result, even though the state in which the
channel ends right before any requests is predictable, in the
current implementation the system still initializes the chan-
nel through computation. At the moment, each base snapshot
only supports a particular VM memory size For example,
a Python3 base snapshot created on a VM with 128MB of
memory cannot be used to start a 256MB function. Support-
ing each VM size requires one base snapshot. However, we
believe this is fixable using well-known memory balloon-
ing strategies and intend to implement this functionality in
SnapFaaS. Some runtimes (Node.js in particular) use the OS’
random number generator during initialization regardless of
whether user code needs randomness. Because there is very
little entropy during sandbox initialization, the kernel does
not consider the randomness pool ready for a very long time,
blocking runtime initialization during snapshot generation.
Our current implementation manually insecurely adds “ran-
domness” to the pool. However we intend to incorporate the
VirtRNG driver in the future. VirtRNG would allow the guest
VM to simply pre-seeded randomness from the host.

Substituting normal sandbox creation for efficient and fast
snapshot-based techniques as in SnapFaaS opens a number
of research directions we have not yet explored in depth and
leave for future work. One example is that SnapFaaS might
help mask the performance and resource overhead of heavier
operating systems. Today, FaaS platforms use stripped down
operating system distributions to mitigate cold-start latency
and reduce per-function memory overhead. In a typical FaaS
environment, without snapshots, this makes sense. However,
the result typically lacks common developer conveniences,
such as DBus on Linux. Because SnapFaaS loads the base
snapshot lazily we expect a more complete OS interface to
have limited or no per-function memory or performance over-
head.

10 Conclusions

We presented SnapFaaS, a snapshot for FaaS system based on
Linux VM. We first think from first principles modeling the
fundamental overhead of snapshot restoration. Then, we have
the model guide our design leading to the base-diff split
snapshot. SnapFaaS delivers near-optimal cold-start overhead
with negligible memory overhead. SnapFaaS and all of the
experimental infrastructure is open source and available at
https://fakeplatform.biz/mindyour/beeswax.

12

References

[1] Alpine Linux. https://alpinelinux.org/.

[2] AWS Lambda. https://aws.amazon.com/lambda/.

[3] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/.

[4] Cloudflare Workers. https://www.cloudflare.com/
products/cloudflare-workers/.

[5] Docker Overview. https://docs.docker.com/
engine/docker-overview/.

[6] Fastly Terrarium. https://www.fastly.com/blog/
how-compute-edge-is-tackling-the-most-
frustrating-aspects-of-serverless.

[7] Firecracker microVM GitHub. https://github.com/
firecracker-microvm/firecracker.

[8] Google Cloud. https://cloud.google.com/
appengine/docs/standard/go/configuring-
warmup-requests.

[9] Google Cloud Functions. https://cloud.google.
com/functions/.

[10] Google gvisor. https://gvisor.dev/.

[11] OpenRC, Gentoo Linux. https://wiki.gentoo.org/
wiki/Project:OpenRC.

[12] Virtual I/O Device (VIRTIO) Version 1.0.
http://docs.oasis-open.org/virtio/virtio/
v1.0/virtio-v1.0.html.

[13] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[14] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Ad-
dress Obfuscation: An Efficient Approach to Combat a
Board Range of Memory Error Exploits. In Proceedings
of the 12th Conference on USENIX Security Symposium
- Volume 12, SSYM’03, page 8, USA, 2003. USENIX
Association.

[15] David Bigelow, Thomas Hobson, Robert Rudd, William
Streilein, and Hamed Okhravi. Timely Rerandomization
for Mitigating Memory Disclosures. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, page 268–279,
New York, NY, USA, 2015. Association for Computing
Machinery.

[16] Dan Bornstein. Dalvik virtual machine internals.
Google I/O, 2008, 2008.

[17] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[18] James Cadden, Thomas Unger, Yara Awad, Han Dong,
Orran Krieger, and Jonathan Appavoo. Seuss: Skip
redundant paths to make serverless fast. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[20] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. Kvm: the linux virtual machine monitor.
In In Proceedings of the 2007 Ottawa Linux Symposium
(OLS’-07, 2007.

[22] Avi Kivity, Dor Laor, Glauber Costa, Pekka En-
berg, Nadav Har’El, Don Marti, and Vlad Zolotarov.
Osv—optimizing the operating system for virtual ma-
chines. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 61–72, Philadelphia, PA, 2014.
USENIX Association.

[23] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
metal extensions for multi-tenant low-latency storage.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 627–643,
Carlsbad, CA, October 2018. USENIX Association.

[24] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whit-
ney, Adin Matthew Scannell, Philip Patchin, Stephen M.
Rumble, Eyal De Lara, Michael Brudno, and Mahadev

13

https://alpinelinux.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://www.fastly.com/blog/how-compute-edge-is-tackling-the-most-frustrating-aspects-of-serverless
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker
https://cloud.google.com/appengine/docs/standard/go/configuring-warmup-requests
https://cloud.google.com/appengine/docs/standard/go/configuring-warmup-requests
https://cloud.google.com/appengine/docs/standard/go/configuring-warmup-requests
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://gvisor.dev/
https://wiki.gentoo.org/wiki/Project:OpenRC
https://wiki.gentoo.org/wiki/Project:OpenRC
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html

Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. In Proceedings of the
4th ACM European conference on Computer systems,
pages 1–12. ACM, 2009.

[25] Collin Lee and John Ousterhout. Granular Computing.
In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems - HotOS ’19, pages 149–154, Bertinoro,
Italy, 2019. ACM Press.

[26] Kangjie Lu, Stefen Nurnberger, Backes Michael, and
Wenke Lee. How to Make ASLR Win the Clone Wars:
Runtime Re-Randomization. In The Network and Dis-
tributed System Security Symposium 2016, NDSS ’16,
2016.

[27] Anil Madhavapeddy and David J. Scott. Unikernels:
Rise of the virtual library operating system. Queue,
11(11):30:30–30:44, December 2013.

[28] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My vm is lighter (and
safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 218–233, New York, NY, USA, 2017. ACM.

[29] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages
57–70, Boston, MA, 2018. USENIX Association.

[30] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get off of My Cloud: Ex-
ploring Information Leakage in Third-Party Compute
Clouds. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09,
page 199–212, New York, NY, USA, 2009. Association
for Computing Machinery.

[31] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218. USENIX Associa-
tion, July 2020.

[32] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking, analy-
sis, and optimization of serverless function snapshots. In
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2021, page 559–572,

New York, NY, USA, 2021. Association for Computing
Machinery.

[33] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a
managed runtime environment. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[34] Dan Williams and Ricardo Koller. Unikernel moni-
tors: Extending minimalism outside of the box. In 8th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Associa-
tion.

[35] David Williams-King, Graham Gobieski, Kent Williams-
King, James P. Blake, Xinhao Yuan, Patrick Colp,
Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. Shuffler: Fast and deployable con-
tinuous code re-randomization. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pages 367–382, Savannah, GA, November
2016. USENIX Association.

14

	1 Introduction
	2 Cold-Start Mitigations in FaaS Today
	2.1 Reducing Cold-Starts with Memoization
	2.2 Prior Work

	3 Memoization from First Principles
	3.1 Required Execution State
	3.2 Fundamental Overheads

	4 SnapFaaS
	4.1 Maximize Shared Pages, Minimize Shared Written Pages
	4.2 Minimize Unique Pages
	4.3 Minimize Initialization Computation

	5 Implementation
	5.1 Software Stack
	5.2 SnapFaaS Generation and Restoration
	5.3 SnapFaaS Deployed

	6 Evaluation
	6.1 Experimental Setup
	6.2 Snapshot Performance Comparison
	6.3 Cold-Start Overhead Breakdown
	6.4 Memory Overhead

	7 Related Work
	8 Discussion
	9 Limitations & Future Work
	10 Conclusions

